File size: 13,226 Bytes
e63fe3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env/python3
"""Recipe for training a whisper-based ctc ASR system with librispeech.
The system employs whisper from OpenAI (https://cdn.openai.com/papers/whisper.pdf).
This recipe take only the whisper encoder and add a DNN + CTC to fine-tune.

If you want to use the full whisper system, please refer to the recipe
speechbrain/recipes/LibriSpeech/ASR/transformer/train_with_whisper.py

To run this recipe, do the following:
> python train_with_whisper.py hparams/train_hf_whisper_encoder.yaml

Authors
 * Titouan Parcollet 2022
 * Rudolf A Braun 2022
 * Sung-Lin Yeh 2021
 * Ju-Chieh Chou 2020
 * Mirco Ravanelli 2020
 * Abdel Heba 2020
 * Peter Plantinga 2020
 * Samuele Cornell 2020
"""

import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from speechbrain.tokenizers.SentencePiece import SentencePiece
from speechbrain.utils.data_utils import undo_padding
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path

logger = logging.getLogger(__name__)


# Define training procedure
class ASR(sb.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""
        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        # Add augmentation if specified
        if stage == sb.Stage.TRAIN:
            if hasattr(self.hparams, "augmentation"):
                wavs = self.hparams.augmentation(wavs, wav_lens)

        # Forward pass

        # Encode with Whisper and then DNN
        feats = self.modules.whisper(wavs)
        x = self.modules.enc(feats)

        # Compute outputs
        p_tokens = None
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)
        if stage != sb.Stage.TRAIN:
            p_tokens = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )

        return p_ctc, wav_lens, p_tokens

    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC) given predictions and targets."""

        p_ctc, wav_lens, predicted_tokens = predictions

        ids = batch.id
        tokens, tokens_lens = batch.tokens

        loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
        loss = loss_ctc

        if stage != sb.Stage.TRAIN:

            # Decode token terms to words
            predicted_words = self.tokenizer(
                predicted_tokens, task="decode_from_list"
            )

            # Convert indices to words
            target_words = undo_padding(tokens, tokens_lens)
            target_words = self.tokenizer(target_words, task="decode_from_list")

            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        should_step = self.step % self.grad_accumulation_factor == 0

        # Managing automatic mixed precision
        if self.auto_mix_prec:
            self.whisper_optimizer.zero_grad()
            self.model_optimizer.zero_grad()
            with torch.cuda.amp.autocast():
                outputs = self.compute_forward(batch, sb.Stage.TRAIN)
            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            self.scaler.scale(loss / self.grad_accumulation_factor).backward()
            if should_step:
                self.scaler.unscale_(self.whisper_optimizer)
                self.scaler.unscale_(self.model_optimizer)
                if self.check_gradients(loss):
                    if self.optimizer_step > self.hparams.warmup_steps:
                        # Here we added a warmup to the CTC encoder to make sure that
                        # it does not screw the whisper with too large gradients.
                        self.scaler.step(self.whisper_optimizer)
                    self.scaler.step(self.model_optimizer)
                self.scaler.update()
                self.optimizer_step += 1
        else:
            outputs = self.compute_forward(batch, sb.Stage.TRAIN)
            loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
            (loss / self.grad_accumulation_factor).backward()
            if should_step:
                if self.check_gradients(loss):
                    # Here we added a warmup to the CTC encoder to make sure that
                    # it does not screw the whisper with too large gradients.
                    if self.optimizer_step > self.hparams.warmup_steps:
                        self.whisper_optimizer.step()
                    self.model_optimizer.step()
                self.whisper_optimizer.zero_grad()
                self.model_optimizer.zero_grad()
                self.optimizer_step += 1

        return loss.detach().cpu()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            old_lr_whisper, new_lr_whisper = self.hparams.lr_annealing_whisper(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            sb.nnet.schedulers.update_learning_rate(
                self.whisper_optimizer, new_lr_whisper
            )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                    "lr_whisperc": old_lr_whisper,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):
        "Initializes the whisper optimizer and model optimizer"
        self.whisper_optimizer = self.hparams.whisper_opt_class(
            self.modules.whisper.parameters()
        )

        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable(
                "whisper_opt", self.whisper_optimizer
            )
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)


def dataio_prepare(hparams, tokenizer):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions."""
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
    )

    if hparams["sorting"] == "ascending":
        # we sort training data to speed up training and get better results.
        train_data = train_data.filtered_sorted(sort_key="duration")
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["train_dataloader_opts"]["shuffle"] = False

    elif hparams["sorting"] == "descending":
        train_data = train_data.filtered_sorted(
            sort_key="duration", reverse=True
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["train_dataloader_opts"]["shuffle"] = False

    elif hparams["sorting"] == "random":
        pass

    else:
        raise NotImplementedError(
            "sorting must be random, ascending or descending"
        )

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
    )
    valid_data = valid_data.filtered_sorted(sort_key="duration")

    # test is separate
    test_datasets = {}
    for csv_file in hparams["test_csv"]:
        name = Path(csv_file).stem
        test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
            csv_path=csv_file, replacements={"data_root": data_folder}
        )
        test_datasets[name] = test_datasets[name].filtered_sorted(
            sort_key="duration"
        )

    datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]

    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("wav")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(wav):
        sig = sb.dataio.dataio.read_audio(wav)
        return sig

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("wrd")
    @sb.utils.data_pipeline.provides(
        "wrd", "char_list", "tokens_list", "tokens"
    )
    def text_pipeline(wrd):
        yield wrd
        char_list = list(wrd)
        yield char_list
        tokens_list = tokenizer.sp.encode_as_ids(wrd)
        yield tokens_list
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets, ["id", "sig", "wrd", "char_list", "tokens"],
    )

    return train_data, valid_data, test_datasets


if __name__ == "__main__":

    # CLI:
    hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])

    # If distributed_launch=True then
    # create ddp_group with the right communication protocol
    sb.utils.distributed.ddp_init_group(run_opts)

    with open(hparams_file) as fin:
        hparams = load_hyperpyyaml(fin, overrides)

    # Create experiment directory
    sb.create_experiment_directory(
        experiment_directory=hparams["output_folder"],
        hyperparams_to_save=hparams_file,
        overrides=overrides,
    )

    # Dataset prep (parsing Librispeech)
    from librispeech_prepare import prepare_librispeech  # noqa

    # multi-gpu (ddp) save data preparation
    run_on_main(
        prepare_librispeech,
        kwargs={
            "data_folder": hparams["data_folder"],
            "tr_splits": hparams["train_splits"],
            "dev_splits": hparams["dev_splits"],
            "te_splits": hparams["test_splits"],
            "save_folder": hparams["output_folder"],
            "merge_lst": hparams["train_splits"],
            "merge_name": "train.csv",
            "skip_prep": hparams["skip_prep"],
        },
    )

    # Defining tokenizer and loading it
    tokenizer = SentencePiece(
        model_dir=hparams["save_folder"],
        vocab_size=hparams["output_neurons"],
        annotation_train=hparams["train_csv"],
        annotation_read="wrd",
        model_type=hparams["token_type"],
        character_coverage=hparams["character_coverage"],
    )

    # here we create the datasets objects as well as tokenization and encoding
    train_data, valid_data, test_datasets = dataio_prepare(hparams, tokenizer)

    # Trainer initialization
    asr_brain = ASR(
        modules=hparams["modules"],
        hparams=hparams,
        run_opts=run_opts,
        checkpointer=hparams["checkpointer"],
    )

    # We load the pretrained whisper model
    if "pretrainer" in hparams.keys():
        run_on_main(hparams["pretrainer"].collect_files)
        hparams["pretrainer"].load_collected(asr_brain.device)

    # We dynamicaly add the tokenizer to our brain class.
    # NB: This tokenizer corresponds to the one used for the LM!!
    asr_brain.tokenizer = tokenizer

    # Training
    asr_brain.fit(
        asr_brain.hparams.epoch_counter,
        train_data,
        valid_data,
        train_loader_kwargs=hparams["train_dataloader_opts"],
        valid_loader_kwargs=hparams["valid_dataloader_opts"],
    )

    # Testing
    for k in test_datasets.keys():  # keys are test_clean, test_other etc
        asr_brain.hparams.wer_file = os.path.join(
            hparams["output_folder"], "wer_{}.txt".format(k)
        )
        asr_brain.evaluate(
            test_datasets[k], test_loader_kwargs=hparams["test_dataloader_opts"]
        )