File size: 14,105 Bytes
e63fe3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b934f7
e63fe3d
 
 
 
 
 
e6d3230
 
 
 
 
 
 
 
 
 
21a992c
a03fd36
 
 
e63fe3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14f4c4a
 
e63fe3d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
import torchaudio
import numpy as np

from pyctcdecode import build_ctcdecoder
hparams_file, run_opts, overrides = sb.parse_arguments(["wavlm_partly_frozen.yaml"])

# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)

with open(hparams_file) as fin:
    hparams = load_hyperpyyaml(fin, overrides)

# Create experiment directory
sb.create_experiment_directory(
    experiment_directory=hparams["output_folder"],
    hyperparams_to_save=hparams_file,
    overrides=overrides,
)
def read_labels_file(labels_file): 
    with open(labels_file, "r") as lf: 
        lines = lf.read().splitlines()
        division = "==="
        numbers = {}
        for line in lines : 
            if division in line : 
                break
            string, number = line.split("=>")
            number = int(number)
            string = string[1:-2]
            numbers[number] = string
        return [numbers[x] for x in range(len(numbers))]
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
print(labels)
labels = [""] + labels[1:]
print(len(labels))

# Dataset prep (parsing Librispeech)

resampler_8000  = T.Resample(8000, 16000, dtype=torch.float)

resampler_44100 =T.Resample(44100, 16000, dtype=torch.float)
resampler_48000 =T.Resample(48000, 16000, dtype=torch.float)


resamplers = {"8000": resampler_8000, "44100":resampler_44100, "48000": resampler_48000}
def dataio_prepare(hparams):
    """This function prepares the datasets to be used in the brain class.
    It also defines the data processing pipeline through user-defined functions."""
    data_folder = hparams["data_folder"]

    train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
    )

    if hparams["sorting"] == "ascending":
        # we sort training data to speed up training and get better results.
        train_data = train_data.filtered_sorted(sort_key="duration")
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["train_dataloader_opts"]["shuffle"] = False

    elif hparams["sorting"] == "descending":
        train_data = train_data.filtered_sorted(
            sort_key="duration", reverse=True
        )
        # when sorting do not shuffle in dataloader ! otherwise is pointless
        hparams["train_dataloader_opts"]["shuffle"] = False

    elif hparams["sorting"] == "random":
        pass

    else:
        raise NotImplementedError(
            "sorting must be random, ascending or descending"
        )

    valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
        csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
    )
    valid_data = valid_data.filtered_sorted(sort_key="duration")

    # test is separate
    test_datasets = {}
    for csv_file in hparams["test_csv"]:
        name = Path(csv_file).stem
        test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
            csv_path=csv_file, replacements={"data_root": data_folder}
        )
        test_datasets[name] = test_datasets[name].filtered_sorted(
            sort_key="duration"
        )

    datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]

    # 2. Define audio pipeline:
    @sb.utils.data_pipeline.takes("wav", "sr")
    @sb.utils.data_pipeline.provides("sig")
    def audio_pipeline(wav, sr):
        sig = sb.dataio.dataio.read_audio(wav)
        sig = resamplers[sr](sig)
        return sig

    sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
    label_encoder = sb.dataio.encoder.CTCTextEncoder()

    # 3. Define text pipeline:
    @sb.utils.data_pipeline.takes("wrd")
    @sb.utils.data_pipeline.provides(
        "wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens"
    )
    def text_pipeline(wrd):
        yield wrd
        char_list = list(wrd)
        yield char_list
        tokens_list = label_encoder.encode_sequence(char_list)
        yield tokens_list
        tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
        yield tokens_bos
        tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
        yield tokens_eos
        tokens = torch.LongTensor(tokens_list)
        yield tokens

    sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)

    lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
    special_labels = {
        "bos_label": hparams["bos_index"],
        "eos_label": hparams["eos_index"],
        "blank_label": hparams["blank_index"],
    }
    label_encoder.load_or_create(
        path=lab_enc_file,
        from_didatasets=[train_data],
        output_key="char_list",
        special_labels=special_labels,
        sequence_input=True,
    )

    # 4. Set output:
    sb.dataio.dataset.set_output_keys(
        datasets,
        ["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"],
    )
    return train_data, valid_data, test_datasets, label_encoder


class ASR(sb.Brain):
    def compute_forward(self, batch, stage):
        """Forward computations from the waveform batches to the output probabilities."""
        batch = batch.to(self.device)
        wavs, wav_lens = batch.sig
        print(wavs)
        tokens_bos, _ = batch.tokens_bos
        wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)

        # Forward pass
        feats = self.modules.wav2vec2(wavs)
        x = self.modules.enc(feats)
        # Compute outputs
        p_tokens = None
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)
        if stage != sb.Stage.TRAIN:
            p_tokens = sb.decoders.ctc_greedy_decode(
                p_ctc, wav_lens, blank_id=self.hparams.blank_index
            )
        return p_ctc, wav_lens, p_tokens

    def treat_wav(self,sig):
        feats = self.modules.wav2vec2(sig.to(self.device))
        x = self.modules.enc(feats)
        p_tokens = None
        logits = self.modules.ctc_lin(x)
        p_ctc = self.hparams.log_softmax(logits)
        predicted_words =[]
        for logs in p_ctc:
            text = decoder.decode(logs.detach().cpu().numpy())
            predicted_words.append(text.split(" "))
        return " ".join(predicted_words[0])




    def compute_objectives(self, predictions, batch, stage):
        """Computes the loss (CTC+NLL) given predictions and targets."""

        p_ctc, wav_lens, predicted_tokens = predictions

        ids = batch.id
        tokens_eos, tokens_eos_lens = batch.tokens_eos
        tokens, tokens_lens = batch.tokens

        if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
            tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0)
            tokens_eos_lens = torch.cat(
                [tokens_eos_lens, tokens_eos_lens], dim=0
            )
            tokens = torch.cat([tokens, tokens], dim=0)
            tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)

        loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
        loss = loss_ctc
        if stage != sb.Stage.TRAIN:
            # Decode token terms to words
            predicted_words =[]
            for logs in p_ctc:
                text = decoder.decode(logs.detach().cpu().numpy())
                predicted_words.append(text.split(" "))

            target_words = [wrd.split(" ") for wrd in batch.wrd]
            self.wer_metric.append(ids, predicted_words, target_words)
            self.cer_metric.append(ids, predicted_words, target_words)

        return loss

    def fit_batch(self, batch):
        """Train the parameters given a single batch in input"""
        predictions = self.compute_forward(batch, sb.Stage.TRAIN)
        loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
        loss.backward()
        if self.check_gradients(loss):
            self.wav2vec_optimizer.step()
            self.model_optimizer.step()

        self.wav2vec_optimizer.zero_grad()
        self.model_optimizer.zero_grad()

        return loss.detach()

    def evaluate_batch(self, batch, stage):
        """Computations needed for validation/test batches"""
        predictions = self.compute_forward(batch, stage=stage)
        with torch.no_grad():
            loss = self.compute_objectives(predictions, batch, stage=stage)
        return loss.detach()

    def on_stage_start(self, stage, epoch):
        """Gets called at the beginning of each epoch"""
        if stage != sb.Stage.TRAIN:
            self.cer_metric = self.hparams.cer_computer()
            self.wer_metric = self.hparams.error_rate_computer()

    def on_stage_end(self, stage, stage_loss, epoch):
        """Gets called at the end of an epoch."""
        # Compute/store important stats
        stage_stats = {"loss": stage_loss}
        if stage == sb.Stage.TRAIN:
            self.train_stats = stage_stats
        else:
            stage_stats["CER"] = self.cer_metric.summarize("error_rate")
            stage_stats["WER"] = self.wer_metric.summarize("error_rate")

        # Perform end-of-iteration things, like annealing, logging, etc.
        if stage == sb.Stage.VALID:
            old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
                stage_stats["loss"]
            )
            old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
                stage_stats["loss"]
            )
            sb.nnet.schedulers.update_learning_rate(
                self.model_optimizer, new_lr_model
            )
            sb.nnet.schedulers.update_learning_rate(
                self.wav2vec_optimizer, new_lr_wav2vec
            )
            self.hparams.train_logger.log_stats(
                stats_meta={
                    "epoch": epoch,
                    "lr_model": old_lr_model,
                    "lr_wav2vec": old_lr_wav2vec,
                },
                train_stats=self.train_stats,
                valid_stats=stage_stats,
            )
            self.checkpointer.save_and_keep_only(
                meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
            )
        elif stage == sb.Stage.TEST:
            self.hparams.train_logger.log_stats(
                stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
                test_stats=stage_stats,
            )
            with open(self.hparams.wer_file, "w") as w:
                self.wer_metric.write_stats(w)

    def init_optimizers(self):
        "Initializes the wav2vec2 optimizer and model optimizer"
        self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
            self.modules.wav2vec2.parameters()
        )
        self.model_optimizer = self.hparams.model_opt_class(
            self.hparams.model.parameters()
        )

        if self.checkpointer is not None:
            self.checkpointer.add_recoverable(
                "wav2vec_opt", self.wav2vec_optimizer
            )
            self.checkpointer.add_recoverable("modelopt", self.model_optimizer)

label_encoder = sb.dataio.encoder.CTCTextEncoder()


# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
decoder = build_ctcdecoder(
    labels,
    kenlm_model_path="tunisian.arpa",  # either .arpa or .bin file
    alpha=0.5,  # tuned on a val set
    beta=1,  # tuned on a val set
)
run_opts["device"]="cpu"
asr_brain = ASR(
    modules=hparams["modules"],
    hparams=hparams,
    run_opts=run_opts,
    checkpointer=hparams["checkpointer"],
)
description = """This is a speechbrain-based Automatic Speech Recognition (ASR) model for Tunisian arabic. It outputs Tunisian transcriptions written in Arabic alphabet. Since the language is unwritten, the words' transcriptions may vary. This model is presented by Salah Zaiem, PhD candidate, contact : [email protected]


Due to the nature of the available training data, the model may encounter issues when dealing with foreign words. So, and while it is common for Tunisian speakers to use (mainly french) foreign words, these will lead to more errors. We may work on improving this in further models. 


Run is done on CPU to keep it free in this space. This leads to quite long running times on long sequences. If for your project or research, you want to transcribe long sequences, feel free to drop an email here : [email protected] 


"""
title = "Tunisian Arabic Automatic Speech Recognition"



asr_brain.device= "cpu"
asr_brain.modules.to("cpu")
asr_brain.tokenizer = label_encoder

from enum import Enum, auto
class Stage(Enum):
    TRAIN = auto()
    VALID = auto()
    TEST = auto()

asr_brain.on_evaluate_start()
asr_brain.modules.eval()
import gradio as gr
def treat_wav_file(file_mic, file_upload, resamplers = resamplers,asr=asr_brain, device="cpu") :
    
    if (file_mic is not None) and (file_upload is not None):
       warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
       wav = file_mic
    elif (file_mic is None) and (file_upload is None):
       return "ERROR: You have to either use the microphone or upload an audio file"
    elif file_mic is not None:
       wav = file_mic
    else:
       wav = file_upload
    sig, sr = torchaudio.load(wav)
    tensor_wav = sig.to(device)
    resampled = resamplers[str(sr)](tensor_wav)
    sentence = asr_brain.treat_wav(resampled)
    return sentence

gr.Interface(
    fn=treat_wav_file, 
    title = title, 
    description = description,
    inputs=[gr.inputs.Audio(source="microphone", type='filepath', optional=True),
        gr.inputs.Audio(source="upload", type='filepath', optional=True)]
    ,outputs="text").launch()