Spaces:
Build error
Build error
File size: 14,105 Bytes
e63fe3d 1b934f7 e63fe3d e6d3230 21a992c a03fd36 e63fe3d 14f4c4a e63fe3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import sys
import torch
import logging
import speechbrain as sb
from speechbrain.utils.distributed import run_on_main
from hyperpyyaml import load_hyperpyyaml
from pathlib import Path
import torchaudio.transforms as T
import torchaudio
import numpy as np
from pyctcdecode import build_ctcdecoder
hparams_file, run_opts, overrides = sb.parse_arguments(["wavlm_partly_frozen.yaml"])
# If distributed_launch=True then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
def read_labels_file(labels_file):
with open(labels_file, "r") as lf:
lines = lf.read().splitlines()
division = "==="
numbers = {}
for line in lines :
if division in line :
break
string, number = line.split("=>")
number = int(number)
string = string[1:-2]
numbers[number] = string
return [numbers[x] for x in range(len(numbers))]
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
print(labels)
labels = [""] + labels[1:]
print(len(labels))
# Dataset prep (parsing Librispeech)
resampler_8000 = T.Resample(8000, 16000, dtype=torch.float)
resampler_44100 =T.Resample(44100, 16000, dtype=torch.float)
resampler_48000 =T.Resample(48000, 16000, dtype=torch.float)
resamplers = {"8000": resampler_8000, "44100":resampler_44100, "48000": resampler_48000}
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
valid_data = valid_data.filtered_sorted(sort_key="duration")
# test is separate
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav", "sr")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav, sr):
sig = sb.dataio.dataio.read_audio(wav)
sig = resamplers[sr](sig)
return sig
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens"
)
def text_pipeline(wrd):
yield wrd
char_list = list(wrd)
yield char_list
tokens_list = label_encoder.encode_sequence(char_list)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
special_labels = {
"bos_label": hparams["bos_index"],
"eos_label": hparams["eos_index"],
"blank_label": hparams["blank_index"],
}
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[train_data],
output_key="char_list",
special_labels=special_labels,
sequence_input=True,
)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets,
["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"],
)
return train_data, valid_data, test_datasets, label_encoder
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
print(wavs)
tokens_bos, _ = batch.tokens_bos
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
# Forward pass
feats = self.modules.wav2vec2(wavs)
x = self.modules.enc(feats)
# Compute outputs
p_tokens = None
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
if stage != sb.Stage.TRAIN:
p_tokens = sb.decoders.ctc_greedy_decode(
p_ctc, wav_lens, blank_id=self.hparams.blank_index
)
return p_ctc, wav_lens, p_tokens
def treat_wav(self,sig):
feats = self.modules.wav2vec2(sig.to(self.device))
x = self.modules.enc(feats)
p_tokens = None
logits = self.modules.ctc_lin(x)
p_ctc = self.hparams.log_softmax(logits)
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
return " ".join(predicted_words[0])
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
p_ctc, wav_lens, predicted_tokens = predictions
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0)
tokens_eos_lens = torch.cat(
[tokens_eos_lens, tokens_eos_lens], dim=0
)
tokens = torch.cat([tokens, tokens], dim=0)
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
loss = loss_ctc
if stage != sb.Stage.TRAIN:
# Decode token terms to words
predicted_words =[]
for logs in p_ctc:
text = decoder.decode(logs.detach().cpu().numpy())
predicted_words.append(text.split(" "))
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
predictions = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
loss.backward()
if self.check_gradients(loss):
self.wav2vec_optimizer.step()
self.model_optimizer.step()
self.wav2vec_optimizer.zero_grad()
self.model_optimizer.zero_grad()
return loss.detach()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
predictions = self.compute_forward(batch, stage=stage)
with torch.no_grad():
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
stage_stats["loss"]
)
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
stage_stats["loss"]
)
sb.nnet.schedulers.update_learning_rate(
self.model_optimizer, new_lr_model
)
sb.nnet.schedulers.update_learning_rate(
self.wav2vec_optimizer, new_lr_wav2vec
)
self.hparams.train_logger.log_stats(
stats_meta={
"epoch": epoch,
"lr_model": old_lr_model,
"lr_wav2vec": old_lr_wav2vec,
},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
def init_optimizers(self):
"Initializes the wav2vec2 optimizer and model optimizer"
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
self.modules.wav2vec2.parameters()
)
self.model_optimizer = self.hparams.model_opt_class(
self.hparams.model.parameters()
)
if self.checkpointer is not None:
self.checkpointer.add_recoverable(
"wav2vec_opt", self.wav2vec_optimizer
)
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
label_encoder = sb.dataio.encoder.CTCTextEncoder()
# We dynamicaly add the tokenizer to our brain class.
# NB: This tokenizer corresponds to the one used for the LM!!
decoder = build_ctcdecoder(
labels,
kenlm_model_path="tunisian.arpa", # either .arpa or .bin file
alpha=0.5, # tuned on a val set
beta=1, # tuned on a val set
)
run_opts["device"]="cpu"
asr_brain = ASR(
modules=hparams["modules"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
description = """This is a speechbrain-based Automatic Speech Recognition (ASR) model for Tunisian arabic. It outputs Tunisian transcriptions written in Arabic alphabet. Since the language is unwritten, the words' transcriptions may vary. This model is presented by Salah Zaiem, PhD candidate, contact : [email protected]
Due to the nature of the available training data, the model may encounter issues when dealing with foreign words. So, and while it is common for Tunisian speakers to use (mainly french) foreign words, these will lead to more errors. We may work on improving this in further models.
Run is done on CPU to keep it free in this space. This leads to quite long running times on long sequences. If for your project or research, you want to transcribe long sequences, feel free to drop an email here : [email protected]
"""
title = "Tunisian Arabic Automatic Speech Recognition"
asr_brain.device= "cpu"
asr_brain.modules.to("cpu")
asr_brain.tokenizer = label_encoder
from enum import Enum, auto
class Stage(Enum):
TRAIN = auto()
VALID = auto()
TEST = auto()
asr_brain.on_evaluate_start()
asr_brain.modules.eval()
import gradio as gr
def treat_wav_file(file_mic, file_upload, resamplers = resamplers,asr=asr_brain, device="cpu") :
if (file_mic is not None) and (file_upload is not None):
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
wav = file_mic
elif (file_mic is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
elif file_mic is not None:
wav = file_mic
else:
wav = file_upload
sig, sr = torchaudio.load(wav)
tensor_wav = sig.to(device)
resampled = resamplers[str(sr)](tensor_wav)
sentence = asr_brain.treat_wav(resampled)
return sentence
gr.Interface(
fn=treat_wav_file,
title = title,
description = description,
inputs=[gr.inputs.Audio(source="microphone", type='filepath', optional=True),
gr.inputs.Audio(source="upload", type='filepath', optional=True)]
,outputs="text").launch()
|