Spaces:
Running
Running
import gradio as gr | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<div align="center"> | |
# Elastic Reasoning | |
<div> | |
<div> | |
<h3>🚀 Scalable Chain of Thoughts via Elastic Reasoning 🌟 | |
</div> | |
</div> | |
<br> | |
<div align="center"> | |
[](https://arxiv.org/pdf/2505.05315) | |
[](https://huggingface.co/collections/Salesforce/elastic-reasoning-682b4bba108d6ea0a8bab275) | |
[](https://github.com/SalesforceAIResearch/Elastic-Reasoning) | |
</div> | |
</div> | |
""") | |
gr.Markdown( | |
""" | |
## Table of Contents | |
- [Introduction](#introduction) | |
- [Environment Setup](#environment-setup) | |
- [Training](#training) | |
- [Evaluation](#evaluation) | |
## Introduction | |
We propose **Elastic Reasoning**, a novel framework for scalable chain of thoughts | |
that explicitly separates reasoning into two phases—`thinking and solution`—with | |
independently allocated budgets. At test time, Elastic Reasoning prioritize that | |
completeness of solution segments, significantly improving reliability under tight | |
resource constraints. To train models that are robust to truncated thinking, we | |
introduce a lightweight `budget-constrained rollout` strategy, integrated into GRPO, | |
which teaches the model to reason adaptively when the thinking process is cut | |
short and generalizes effectively to unseen budget constraints without additional | |
training. | |
<p align="center"> | |
<img src="figs/framework.png" width="80%" /> | |
</p> | |
**Main Takeaways** | |
1. ✂️ Thinking + Solution are explicitly separated with independent budgets — boosting reliability under tight compute constraints. | |
2. 🧠 Budget-Constrained Rollout: We train models to handle truncated reasoning using GRPO. | |
3. 📈 Flexible scalability: Robust performance across diverse inference budgets on reasoning benchmarks like AIME and LiveCodeBench. | |
4. ⚙️ Better performance with fewer tokens: Our trained model generates outputs that are 30% shorter while maintaining (or even improving) accuracy. | |
<p align="center"> | |
<img src="figs/aime.png" width="46%" /> | |
<img src="figs/livecode.png" width="48%" /> | |
</p> | |
<p align="center"> | |
<img src="figs/codetable.png" width="90%" /> | |
</p> | |
## Environment Setup | |
### Installation | |
```bash | |
# Installing Python 3.10 Environment. | |
conda create -n e1 python=3.10 -y | |
conda activate e1 | |
# Installing dependencies. | |
cd Elastic-Reasoning | |
pip install -e ./verl | |
pip install -e . | |
``` | |
### Data | |
Our raw training data is in `rllm/data/[train|test]/[code|math]/`, along with preprocessing scripts in `rllm/data/preprocess`. To convert the raw data into Parquet files for training, run: | |
```bash | |
# Download datasets from GDrive, populates rllm/data/[train|test]/[math|code]/*.json | |
python scripts/data/download_datasets.py | |
# Generate parquet files for Deepcoder/DeepscaleR in data/*.parquet | |
python scripts/data/[deepcoder|deepscaler]_dataset.py | |
``` | |
## Training | |
```bash | |
export MODEL_PATH="agentica-org/DeepScaleR-1.5B-Preview" | |
./scripts/e1-math/e1_math_1.5b_1k_1k.sh --model $MODEL_PATH | |
``` | |
## Evaluation | |
To run our evaluation scripts, run: | |
```bash | |
./scripts/eval/eval_model.sh --model [CHECKPOINT_PATH] --datasets [DATASET1] [DATASET2] --output-dir [OUTPUT_DIR] --n [N_PASSES] --tp [TENSOR_PARALLEL_SIZE] --e1-mode [SEPARATE_BUDGETING] --e1-thinking-length [THINKING_LENGTH] --e1-solution-length [SOLUTION_LENGTH] | |
``` | |
### Example on MATH | |
```bash | |
./scripts/eval/eval_model.sh --model Salesforce/E1-Math-1.5B --datasets aime math amc minerva olympiad_bench --output-dir $HOME/E1-Math-1.5B --tp 1 --n 16 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024 | |
``` | |
### Example on LiveCodeBench | |
```bash | |
./scripts/eval/eval_model.sh --model Salesforce/E1-Code-14B --datasets test_livecodebench --output-dir $HOME/E1-Code-14B --tp 4 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024 | |
``` | |
### Example on Codeforces | |
```bash | |
./scripts/eval/eval_model.sh --model Salesforce/E1-Code-14B --datasets test_codeforces --output-dir $HOME/DeepCoder-14B-Preview --tp 4 --n 8 --e1-mode True --e1-thinking-length 1024 --e1-solution-length 1024 | |
``` | |
```bash | |
python scripts/deepcoder/benchmark/cf_elo_calc.py --results_path [RESULTS_JSON_PATH] --pass_n 8 | |
``` | |
### Unconstrained evaluation | |
set `--e1-mode False` and `--max-length [Maxmum token length, e.g. 32768]` | |
## Acknowledgement | |
We greatly thanks [rllm](https://github.com/agentica-project/rllm) and [verl](https://github.com/volcengine/verl) for providing the awesome codebase! | |
## Citation | |
```bibtex | |
@article{xu2025scalable, | |
title={Scalable Chain of Thoughts via Elastic Reasoning}, | |
author={Xu, Yuhui and Dong, Hanze and Wang, Lei and Sahoo, Doyen and Li, Junnan and Xiong, Caiming}, | |
journal={arXiv preprint arXiv:2505.05315}, | |
year={2025} | |
} | |
``` | |
""") | |
if __name__ == "__main__": | |
demo.launch() | |