Spaces:
Running
Running
| import json | |
| import os | |
| import pandas as pd | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import EvalQueueColumn | |
| from src.leaderboard.read_evals import get_model_info | |
| import ipdb | |
| def get_model_info_df(results_path: str, requests_path: str, cols: list=[], benchmark_cols: list=[]) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| raw_data = get_model_info(results_path, requests_path) | |
| all_data_json = [v.to_dict() for v in raw_data] | |
| print(f"The raw data is {all_data_json}") | |
| df = pd.DataFrame.from_records(all_data_json) | |
| print(f"DF for Model Info ********** {df}") | |
| return df | |
| def get_merged_df(result_df: pd.DataFrame, model_info_df: pd.DataFrame) -> pd.DataFrame: | |
| """Merges the model info dataframe with the results dataframe""" | |
| merged_df = pd.merge(model_info_df, result_df, on='model', how='inner') | |
| merged_df = merged_df.drop(columns=['model']) | |
| merged_df = merged_df.rename(columns={'model_w_link': 'model'}) | |
| return merged_df | |
| def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results""" | |
| raw_data = get_raw_eval_results(results_path, requests_path) | |
| # raw_data = get_raw_eval_results(results_path, requests_path) | |
| # print('results_path:', results_path) | |
| # all_data_json = [v.to_dict() for v in raw_data] | |
| # print(f"The raw data is {all_data_json}") | |
| # | |
| # df = pd.DataFrame.from_records(all_data_json) | |
| df = pd.read_csv(results_path) | |
| # df = pd.read_csv('LOTSAv2_EvalBenchmark(Long).csv') | |
| # Step 2: Pivot the DataFrame | |
| df = df.pivot_table(index='model', | |
| columns='dataset', | |
| values='eval_metrics/MAE[0.5]', | |
| aggfunc='first') | |
| df.drop(columns=['ALL'], inplace=True) | |
| df['Average'] = df.mean(axis=1) | |
| # Reset the index if you want the model column to be part of the DataFrame | |
| df.reset_index(inplace=True) | |
| print(f"DF at stage 1 ********** {df}") | |
| # ipdb.set_trace() | |
| df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
| # df = df.sort_values(by=[AutoEvalColumn.__dataclass_fields__['average'].name], ascending=False) | |
| print(f"DF at stage 2 ********** {df}") | |
| df = df[cols].round(decimals=2) | |
| print(f"DF at stage 3 ********** {df}") | |
| # filter out if any of the benchmarks have not been produced | |
| df = df[has_no_nan_values(df, benchmark_cols)] | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requestes""" | |
| entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
| all_evals = [] | |
| for entry in entries: | |
| if ".json" in entry: | |
| file_path = os.path.join(save_path, entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| elif ".md" not in entry: | |
| # this is a folder | |
| sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] | |
| for sub_entry in sub_entries: | |
| file_path = os.path.join(save_path, entry, sub_entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
| df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
| df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
| return df_finished[cols], df_running[cols], df_pending[cols] | |