Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| from src.about import ( # CITATION_BUTTON_LABEL,; CITATION_BUTTON_TEXT,; EVALUATION_QUEUE_TEXT, | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( # EVAL_TYPES,; WeightType,; BENCHMARK_COLS,; EVAL_COLS,; NUMERIC_INTERVALS,; ModelType,; Precision, | |
| COLS, | |
| COST_COLS, | |
| COST_TYPES, | |
| TS_COLS, | |
| TS_TYPES, | |
| TYPES, | |
| AutoEvalColumn, | |
| CostEvalColumn, | |
| TSEvalColumn, | |
| fields, | |
| ) | |
| # from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.envs import CRM_RESULTS_PATH | |
| from src.populate import get_leaderboard_df_crm | |
| original_df, cost_df, ts_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS, COST_COLS) | |
| # raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| leaderboard_df = original_df.copy() | |
| leaderboard_cost_df = cost_df.copy() | |
| leaderboard_ts_df = ts_df.copy() | |
| # leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"}) | |
| # Searching and filtering | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| accuracy_method_query: str, | |
| accuracy_threshold_query: str, | |
| use_case_area_query: list, | |
| use_case_query: list, | |
| use_case_type_query: list, | |
| ): | |
| filtered_df = filter_llm_func(hidden_df, llm_query) | |
| filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query) | |
| filtered_df = filter_accuracy_method_func(filtered_df, accuracy_method_query) | |
| filtered_df["Accuracy Threshold"] = filter_accuracy_threshold_func(filtered_df, accuracy_threshold_query) | |
| filtered_df = filtered_df[filtered_df["Accuracy Threshold"]] | |
| filtered_df["Use Case Area"] = filtered_df["Use Case Name"].apply(lambda x: x.split(": ")[0]) | |
| filtered_df = filter_use_case_area_func(filtered_df, use_case_area_query) | |
| filtered_df = filter_use_case_func(filtered_df, use_case_query) | |
| filtered_df = filter_use_case_type_func(filtered_df, use_case_type_query) | |
| df = select_columns(filtered_df, columns) | |
| return df | |
| def update_cost_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| use_case_type_query: list, | |
| ): | |
| filtered_df = filter_llm_func(hidden_df, llm_query) | |
| filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query) | |
| filtered_df = filter_use_case_type_func(filtered_df, use_case_type_query) | |
| df = select_columns_cost_table(filtered_df, columns) | |
| return df.style.map(highlight_cost_band_low, props="background-color: #b3d5a4") | |
| def update_ts_table( | |
| hidden_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| ): | |
| filtered_df = filter_llm_func(hidden_df, llm_query) | |
| filtered_df = filter_llm_provider_func(filtered_df, llm_provider_query) | |
| df = select_columns_ts_table(filtered_df, columns) | |
| return df | |
| # def highlight_cols(x): | |
| # df = x.copy() | |
| # df.loc[:, :] = "color: black" | |
| # df.loc[, ["Accuracy"]] = "background-color: #b3d5a4" | |
| # return df | |
| def highlight_cost_band_low(s, props=""): | |
| return props if s == "Low" else None | |
| def init_leaderboard_df( | |
| leaderboard_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| accuracy_method_query: str, | |
| accuracy_threshold_query: str, | |
| use_case_area_query: list, | |
| use_case_query: list, | |
| use_case_type_query: list, | |
| ): | |
| # Applying the style function | |
| # return df.style.apply(highlight_cols, axis=None) | |
| return update_table( | |
| leaderboard_df, | |
| columns, | |
| llm_query, | |
| llm_provider_query, | |
| accuracy_method_query, | |
| accuracy_threshold_query, | |
| use_case_area_query, | |
| use_case_query, | |
| use_case_type_query, | |
| ) | |
| def init_leaderboard_cost_df( | |
| leaderboard_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| use_case_type_query: list, | |
| ): | |
| return update_cost_table( | |
| leaderboard_df, | |
| columns, | |
| llm_query, | |
| llm_provider_query, | |
| use_case_type_query, | |
| ) | |
| def init_leaderboard_ts_df( | |
| leaderboard_df: pd.DataFrame, | |
| columns: list, | |
| llm_query: list, | |
| llm_provider_query: list, | |
| ): | |
| return update_ts_table( | |
| leaderboard_df, | |
| columns, | |
| llm_query, | |
| llm_provider_query, | |
| ) | |
| def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame: | |
| return df[df["Accuracy Method"] == accuracy_method_query] | |
| def filter_accuracy_threshold_func(df: pd.DataFrame, accuracy_threshold_query: str) -> pd.DataFrame: | |
| accuracy_cols = ["Instruction Following", "Conciseness", "Completeness", "Accuracy"] | |
| return (df.loc[:, accuracy_cols] >= float(accuracy_threshold_query)).all(axis=1) | |
| def filter_use_case_area_func(df: pd.DataFrame, use_case_area_query: list) -> pd.DataFrame: | |
| return df[ | |
| df["Use Case Area"].apply( | |
| lambda x: len(set([_.strip() for _ in x.split("&")]).intersection(use_case_area_query)) | |
| ) | |
| > 0 | |
| ] | |
| def filter_use_case_func(df: pd.DataFrame, use_case_query: list) -> pd.DataFrame: | |
| return df[df["Use Case Name"].isin(use_case_query)] | |
| def filter_use_case_type_func(df: pd.DataFrame, use_case_type_query: list) -> pd.DataFrame: | |
| return df[df["Use Case Type"].isin(use_case_type_query)] | |
| def filter_llm_func(df: pd.DataFrame, llm_query: list) -> pd.DataFrame: | |
| return df[df["Model Name"].isin(llm_query)] | |
| def filter_llm_provider_func(df: pd.DataFrame, llm_provider_query: list) -> pd.DataFrame: | |
| return df[df["LLM Provider"].isin(llm_provider_query)] | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumn.model.name, | |
| ] | |
| # We use COLS to maintain sorting | |
| filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]] | |
| return filtered_df | |
| def select_columns_cost_table(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| CostEvalColumn.model.name, | |
| ] | |
| filtered_df = df[always_here_cols + [c for c in COST_COLS if c in df.columns and c in columns]] | |
| return filtered_df | |
| def select_columns_ts_table(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| TSEvalColumn.model.name, | |
| ] | |
| filtered_df = df[always_here_cols + [c for c in TS_COLS if c in df.columns and c in columns]] | |
| return filtered_df | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| with gr.Row(): | |
| with gr.Column(): | |
| # with gr.Row(): | |
| # search_bar = gr.Textbox( | |
| # placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| # show_label=False, | |
| # elem_id="search-bar", | |
| # ) | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| # with gr.Column(min_width=320): | |
| # # with gr.Box(elem_id="box-filter"): | |
| # filter_columns_type = gr.CheckboxGroup( | |
| # label="Model types", | |
| # choices=[t.to_str() for t in ModelType], | |
| # value=[t.to_str() for t in ModelType], | |
| # interactive=True, | |
| # elem_id="filter-columns-type", | |
| # ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| filter_llm = gr.CheckboxGroup( | |
| choices=list(original_df["Model Name"].unique()), | |
| value=list(original_df["Model Name"].unique()), | |
| label="Model Name", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_llm_provider = gr.CheckboxGroup( | |
| choices=list(original_df["LLM Provider"].unique()), | |
| value=list(original_df["LLM Provider"].unique()), | |
| label="LLM Provider", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| filter_use_case = gr.CheckboxGroup( | |
| choices=list(original_df["Use Case Name"].unique()), | |
| value=list(original_df["Use Case Name"].unique()), | |
| label="Use Case", | |
| info="", | |
| # multiselect=True, | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| filter_use_case_area = gr.CheckboxGroup( | |
| choices=["Service", "Sales"], | |
| value=["Service", "Sales"], | |
| label="Use Case Area", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_use_case_type = gr.CheckboxGroup( | |
| choices=["Summary", "Generation"], | |
| value=["Summary", "Generation"], | |
| label="Use Case Type", | |
| info="", | |
| interactive=True, | |
| ) | |
| # with gr.Column(): | |
| # filter_use_case = gr.Dropdown( | |
| # choices=list(original_df["Use Case Name"].unique()), | |
| # value=list(original_df["Use Case Name"].unique()), | |
| # label="Use Case", | |
| # info="", | |
| # multiselect=True, | |
| # interactive=True, | |
| # ) | |
| # with gr.Column(): | |
| # filter_metric_area = gr.CheckboxGroup( | |
| # choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"], | |
| # value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"], | |
| # label="Metric Area", | |
| # info="", | |
| # interactive=True, | |
| # ) | |
| with gr.Column(): | |
| filter_accuracy_method = gr.Radio( | |
| choices=["Manual", "Auto"], | |
| value="Manual", | |
| label="Accuracy Method", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_accuracy_threshold = gr.Number( | |
| value="3", | |
| label="Accuracy Threshold", | |
| info="Range: 0.0 to 4.0", | |
| interactive=True, | |
| ) | |
| # with gr.Column(): | |
| # filter_llm = gr.CheckboxGroup( | |
| # choices=list(original_df["Model Name"].unique()), | |
| # value=list(leaderboard_df["Model Name"].unique()), | |
| # label="Model Name", | |
| # info="", | |
| # interactive=True, | |
| # ) | |
| # with gr.Column(): | |
| # filter_llm_provider = gr.CheckboxGroup( | |
| # choices=list(original_df["LLM Provider"].unique()), | |
| # value=list(leaderboard_df["LLM Provider"].unique()), | |
| # label="LLM Provider", | |
| # info="", | |
| # interactive=True, | |
| # ) | |
| leaderboard_table = gr.components.Dataframe( | |
| # value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value], | |
| value=init_leaderboard_df( | |
| leaderboard_df, | |
| shown_columns.value, | |
| filter_llm.value, | |
| filter_llm_provider.value, | |
| filter_accuracy_method.value, | |
| filter_accuracy_threshold.value, | |
| filter_use_case_area.value, | |
| filter_use_case.value, | |
| filter_use_case_type.value, | |
| ), | |
| headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| # search_bar.submit( | |
| # update_table, | |
| # [ | |
| # hidden_leaderboard_table_for_search, | |
| # shown_columns, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| # ], | |
| # leaderboard_table, | |
| # ) | |
| for selector in [ | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| filter_accuracy_method, | |
| filter_accuracy_threshold, | |
| filter_use_case_area, | |
| filter_use_case, | |
| filter_use_case_type, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| ]: | |
| selector.change( | |
| update_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| filter_accuracy_method, | |
| filter_accuracy_threshold, | |
| filter_use_case_area, | |
| filter_use_case, | |
| filter_use_case_type, | |
| # filter_columns_type, | |
| # filter_columns_precision, | |
| # filter_columns_size, | |
| # deleted_models_visibility, | |
| # search_bar, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("π Latency & Cost", elem_id="llm-benchmark-tab-table", id=1): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[c.name for c in fields(CostEvalColumn) if not c.hidden and not c.never_hidden], | |
| value=[ | |
| c.name | |
| for c in fields(CostEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| filter_llm = gr.CheckboxGroup( | |
| choices=list(cost_df["Model Name"].unique()), | |
| value=list(cost_df["Model Name"].unique()), | |
| label="Model Name", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_llm_provider = gr.CheckboxGroup( | |
| choices=list(cost_df["LLM Provider"].unique()), | |
| value=list(cost_df["LLM Provider"].unique()), | |
| label="LLM Provider", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_use_case_type = gr.CheckboxGroup( | |
| choices=["Long", "Short"], | |
| value=["Long", "Short"], | |
| label="Use Case Type", | |
| info="Output: 250 tokens, Long input: 3k tokens, Short input: 500 tokens", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=init_leaderboard_cost_df( | |
| leaderboard_cost_df, | |
| shown_columns.value, | |
| filter_llm.value, | |
| filter_llm_provider.value, | |
| filter_use_case_type.value, | |
| ), | |
| headers=[c.name for c in fields(CostEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=COST_TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=cost_df[COST_COLS], | |
| headers=COST_COLS, | |
| datatype=COST_TYPES, | |
| visible=False, | |
| ) | |
| for selector in [ | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| filter_use_case_type, | |
| ]: | |
| selector.change( | |
| update_cost_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| filter_use_case_type, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("π Trust & Safety", elem_id="llm-benchmark-tab-table", id=2): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| shown_columns = gr.CheckboxGroup( | |
| choices=[c.name for c in fields(TSEvalColumn) if not c.hidden and not c.never_hidden], | |
| value=[ | |
| c.name | |
| for c in fields(TSEvalColumn) | |
| if c.displayed_by_default and not c.hidden and not c.never_hidden | |
| ], | |
| label="Select columns to show", | |
| elem_id="column-select", | |
| interactive=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| filter_llm = gr.CheckboxGroup( | |
| choices=list(ts_df["Model Name"].unique()), | |
| value=list(ts_df["Model Name"].unique()), | |
| label="Model Name", | |
| info="", | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| filter_llm_provider = gr.CheckboxGroup( | |
| choices=list(ts_df["LLM Provider"].unique()), | |
| value=list(ts_df["LLM Provider"].unique()), | |
| label="LLM Provider", | |
| info="", | |
| interactive=True, | |
| ) | |
| leaderboard_table = gr.components.Dataframe( | |
| value=init_leaderboard_ts_df( | |
| leaderboard_ts_df, | |
| shown_columns.value, | |
| filter_llm.value, | |
| filter_llm_provider.value, | |
| ), | |
| headers=[c.name for c in fields(TSEvalColumn) if c.never_hidden] + shown_columns.value, | |
| datatype=TS_TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
| value=ts_df[TS_COLS], | |
| headers=TS_COLS, | |
| datatype=TS_TYPES, | |
| visible=False, | |
| ) | |
| for selector in [ | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| ]: | |
| selector.change( | |
| update_ts_table, | |
| [ | |
| hidden_leaderboard_table_for_search, | |
| shown_columns, | |
| filter_llm, | |
| filter_llm_provider, | |
| ], | |
| leaderboard_table, | |
| queue=True, | |
| ) | |
| with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| # scheduler = BackgroundScheduler() | |
| # scheduler.add_job(restart_space, "interval", seconds=1800) | |
| # scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |