Commit
·
6a6ee7b
1
Parent(s):
7db9110
optimize
Browse files- config.py +3 -2
- routes/summarize.py +16 -5
- services/extractor.py +18 -14
- services/summarizer.py +9 -6
config.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
# config.py
|
2 |
import torch
|
3 |
-
|
4 |
-
|
|
|
5 |
FRAME_RATE = 15
|
6 |
SCORE_THRESHOLD = 0.4
|
7 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
1 |
# config.py
|
2 |
import torch
|
3 |
+
import os
|
4 |
+
UPLOAD_DIR = os.path.join(os.getcwd(), "static/uploads")
|
5 |
+
OUTPUT_DIR = os.path.join(os.getcwd(), "static/outputs")
|
6 |
FRAME_RATE = 15
|
7 |
SCORE_THRESHOLD = 0.4
|
8 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
routes/summarize.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
from fastapi import APIRouter, UploadFile, File
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from utils.file_utils import save_uploaded_file
|
4 |
-
from services.extractor import extract_features
|
5 |
-
from services.model_loader import load_model
|
6 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
7 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
8 |
|
@@ -13,15 +12,27 @@ def summarize_video(video: UploadFile = File(...)):
|
|
13 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
14 |
return JSONResponse(content={"error": "Unsupported file format"}, status_code=400)
|
15 |
|
|
|
16 |
video_path = save_uploaded_file(video, UPLOAD_DIR)
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
selected = get_selected_indices(scores, picks)
|
21 |
output_path = f"{OUTPUT_DIR}/summary_{video.filename}"
|
|
|
|
|
22 |
save_summary_video(video_path, selected, output_path)
|
23 |
summary_url = f"/static/outputs/summary_{video.filename}"
|
24 |
|
|
|
25 |
return JSONResponse(content={
|
26 |
"message": "Summarization complete",
|
27 |
"summary_video_url": summary_url
|
|
|
1 |
from fastapi import APIRouter, UploadFile, File
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from utils.file_utils import save_uploaded_file
|
4 |
+
from services.extractor import extract_frames, extract_features
|
|
|
5 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
6 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
7 |
|
|
|
12 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
13 |
return JSONResponse(content={"error": "Unsupported file format"}, status_code=400)
|
14 |
|
15 |
+
print("\n-----------> Uploading Video ....")
|
16 |
video_path = save_uploaded_file(video, UPLOAD_DIR)
|
17 |
+
|
18 |
+
print("\n-----------> Extracting Frames ....")
|
19 |
+
frames, picks = extract_frames(video_path)
|
20 |
+
|
21 |
+
print("\n-----------> Extracting Features ....")
|
22 |
+
features = extract_features(frames)
|
23 |
+
|
24 |
+
print("\n-----------> Getting Scores ....")
|
25 |
+
scores = get_scores(features)
|
26 |
+
|
27 |
+
print("\n-----------> Selecting Indices ....")
|
28 |
selected = get_selected_indices(scores, picks)
|
29 |
output_path = f"{OUTPUT_DIR}/summary_{video.filename}"
|
30 |
+
|
31 |
+
print("\n-----------> Saving Video ....")
|
32 |
save_summary_video(video_path, selected, output_path)
|
33 |
summary_url = f"/static/outputs/summary_{video.filename}"
|
34 |
|
35 |
+
print("\n-----------> Returning Response ....")
|
36 |
return JSONResponse(content={
|
37 |
"message": "Summarization complete",
|
38 |
"summary_video_url": summary_url
|
services/extractor.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
from torchvision import models, transforms
|
6 |
from config import DEVICE, FRAME_RATE
|
|
|
7 |
|
8 |
# Load GoogLeNet once
|
9 |
from torchvision.models import GoogLeNet_Weights
|
@@ -40,23 +41,26 @@ transform = transforms.Compose([
|
|
40 |
)
|
41 |
])
|
42 |
|
43 |
-
def
|
44 |
cap = cv2.VideoCapture(video_path)
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
|
|
50 |
ret, frame = cap.read()
|
51 |
if not ret:
|
52 |
break
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
with torch.no_grad():
|
57 |
-
feature = feature_extractor(input_tensor).squeeze(0).cpu().numpy()
|
58 |
-
frames.append(feature)
|
59 |
-
picks.append(count)
|
60 |
-
count += 1
|
61 |
cap.release()
|
62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
from torchvision import models, transforms
|
6 |
from config import DEVICE, FRAME_RATE
|
7 |
+
from tqdm import tqdm
|
8 |
|
9 |
# Load GoogLeNet once
|
10 |
from torchvision.models import GoogLeNet_Weights
|
|
|
41 |
)
|
42 |
])
|
43 |
|
44 |
+
def extract_frames(video_path):
|
45 |
cap = cv2.VideoCapture(video_path)
|
46 |
+
frames = []
|
47 |
+
indices = []
|
48 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
49 |
+
total_frames = 100 # TEMP
|
50 |
|
51 |
+
for idx in tqdm(range(0, total_frames, FRAME_RATE)):
|
52 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
53 |
ret, frame = cap.read()
|
54 |
if not ret:
|
55 |
break
|
56 |
+
frames.append(Image.fromarray(frame))
|
57 |
+
indices.append(idx)
|
58 |
+
|
|
|
|
|
|
|
|
|
|
|
59 |
cap.release()
|
60 |
+
return frames, indices
|
61 |
+
|
62 |
+
def extract_features(frames):
|
63 |
+
features = [transform(frame) for frame in frames]
|
64 |
+
features = torch.stack(features).to(DEVICE)
|
65 |
+
features = feature_extractor(features)
|
66 |
+
return features
|
services/summarizer.py
CHANGED
@@ -1,16 +1,19 @@
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
from config import SCORE_THRESHOLD
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
with torch.no_grad():
|
9 |
-
|
10 |
-
scores, _ = model(features_tensor)
|
11 |
return scores.squeeze().cpu().numpy()
|
12 |
|
13 |
-
|
14 |
def get_selected_indices(scores, picks, threshold=SCORE_THRESHOLD):
|
15 |
return [picks[i] for i, score in enumerate(scores) if score >= threshold]
|
16 |
|
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
from config import SCORE_THRESHOLD
|
4 |
+
from services.model_loader import load_model
|
5 |
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
model = load_model("Model/epoch-199.pkl")
|
8 |
+
model = model.to(device)
|
9 |
+
model = model.eval()
|
10 |
+
|
11 |
+
def get_scores(features):
|
12 |
+
# features.shape: (N, 1024)
|
13 |
with torch.no_grad():
|
14 |
+
scores, _ = model(features)
|
|
|
15 |
return scores.squeeze().cpu().numpy()
|
16 |
|
|
|
17 |
def get_selected_indices(scores, picks, threshold=SCORE_THRESHOLD):
|
18 |
return [picks[i] for i, score in enumerate(scores) if score >= threshold]
|
19 |
|