Commit
·
6a6ee7b
1
Parent(s):
7db9110
optimize
Browse files- config.py +3 -2
- routes/summarize.py +16 -5
- services/extractor.py +18 -14
- services/summarizer.py +9 -6
config.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
# config.py
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
FRAME_RATE = 15
|
| 6 |
SCORE_THRESHOLD = 0.4
|
| 7 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 1 |
# config.py
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
+
UPLOAD_DIR = os.path.join(os.getcwd(), "static/uploads")
|
| 5 |
+
OUTPUT_DIR = os.path.join(os.getcwd(), "static/outputs")
|
| 6 |
FRAME_RATE = 15
|
| 7 |
SCORE_THRESHOLD = 0.4
|
| 8 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
routes/summarize.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
from fastapi import APIRouter, UploadFile, File
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from utils.file_utils import save_uploaded_file
|
| 4 |
-
from services.extractor import extract_features
|
| 5 |
-
from services.model_loader import load_model
|
| 6 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
| 7 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
| 8 |
|
|
@@ -13,15 +12,27 @@ def summarize_video(video: UploadFile = File(...)):
|
|
| 13 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
| 14 |
return JSONResponse(content={"error": "Unsupported file format"}, status_code=400)
|
| 15 |
|
|
|
|
| 16 |
video_path = save_uploaded_file(video, UPLOAD_DIR)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
selected = get_selected_indices(scores, picks)
|
| 21 |
output_path = f"{OUTPUT_DIR}/summary_{video.filename}"
|
|
|
|
|
|
|
| 22 |
save_summary_video(video_path, selected, output_path)
|
| 23 |
summary_url = f"/static/outputs/summary_{video.filename}"
|
| 24 |
|
|
|
|
| 25 |
return JSONResponse(content={
|
| 26 |
"message": "Summarization complete",
|
| 27 |
"summary_video_url": summary_url
|
|
|
|
| 1 |
from fastapi import APIRouter, UploadFile, File
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from utils.file_utils import save_uploaded_file
|
| 4 |
+
from services.extractor import extract_frames, extract_features
|
|
|
|
| 5 |
from services.summarizer import get_scores, get_selected_indices, save_summary_video
|
| 6 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
| 7 |
|
|
|
|
| 12 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
|
| 13 |
return JSONResponse(content={"error": "Unsupported file format"}, status_code=400)
|
| 14 |
|
| 15 |
+
print("\n-----------> Uploading Video ....")
|
| 16 |
video_path = save_uploaded_file(video, UPLOAD_DIR)
|
| 17 |
+
|
| 18 |
+
print("\n-----------> Extracting Frames ....")
|
| 19 |
+
frames, picks = extract_frames(video_path)
|
| 20 |
+
|
| 21 |
+
print("\n-----------> Extracting Features ....")
|
| 22 |
+
features = extract_features(frames)
|
| 23 |
+
|
| 24 |
+
print("\n-----------> Getting Scores ....")
|
| 25 |
+
scores = get_scores(features)
|
| 26 |
+
|
| 27 |
+
print("\n-----------> Selecting Indices ....")
|
| 28 |
selected = get_selected_indices(scores, picks)
|
| 29 |
output_path = f"{OUTPUT_DIR}/summary_{video.filename}"
|
| 30 |
+
|
| 31 |
+
print("\n-----------> Saving Video ....")
|
| 32 |
save_summary_video(video_path, selected, output_path)
|
| 33 |
summary_url = f"/static/outputs/summary_{video.filename}"
|
| 34 |
|
| 35 |
+
print("\n-----------> Returning Response ....")
|
| 36 |
return JSONResponse(content={
|
| 37 |
"message": "Summarization complete",
|
| 38 |
"summary_video_url": summary_url
|
services/extractor.py
CHANGED
|
@@ -4,6 +4,7 @@ import numpy as np
|
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import models, transforms
|
| 6 |
from config import DEVICE, FRAME_RATE
|
|
|
|
| 7 |
|
| 8 |
# Load GoogLeNet once
|
| 9 |
from torchvision.models import GoogLeNet_Weights
|
|
@@ -40,23 +41,26 @@ transform = transforms.Compose([
|
|
| 40 |
)
|
| 41 |
])
|
| 42 |
|
| 43 |
-
def
|
| 44 |
cap = cv2.VideoCapture(video_path)
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
ret, frame = cap.read()
|
| 51 |
if not ret:
|
| 52 |
break
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
with torch.no_grad():
|
| 57 |
-
feature = feature_extractor(input_tensor).squeeze(0).cpu().numpy()
|
| 58 |
-
frames.append(feature)
|
| 59 |
-
picks.append(count)
|
| 60 |
-
count += 1
|
| 61 |
cap.release()
|
| 62 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from torchvision import models, transforms
|
| 6 |
from config import DEVICE, FRAME_RATE
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
|
| 9 |
# Load GoogLeNet once
|
| 10 |
from torchvision.models import GoogLeNet_Weights
|
|
|
|
| 41 |
)
|
| 42 |
])
|
| 43 |
|
| 44 |
+
def extract_frames(video_path):
|
| 45 |
cap = cv2.VideoCapture(video_path)
|
| 46 |
+
frames = []
|
| 47 |
+
indices = []
|
| 48 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 49 |
+
total_frames = 100 # TEMP
|
| 50 |
|
| 51 |
+
for idx in tqdm(range(0, total_frames, FRAME_RATE)):
|
| 52 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
| 53 |
ret, frame = cap.read()
|
| 54 |
if not ret:
|
| 55 |
break
|
| 56 |
+
frames.append(Image.fromarray(frame))
|
| 57 |
+
indices.append(idx)
|
| 58 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
cap.release()
|
| 60 |
+
return frames, indices
|
| 61 |
+
|
| 62 |
+
def extract_features(frames):
|
| 63 |
+
features = [transform(frame) for frame in frames]
|
| 64 |
+
features = torch.stack(features).to(DEVICE)
|
| 65 |
+
features = feature_extractor(features)
|
| 66 |
+
return features
|
services/summarizer.py
CHANGED
|
@@ -1,16 +1,19 @@
|
|
| 1 |
import cv2
|
| 2 |
import torch
|
| 3 |
from config import SCORE_THRESHOLD
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
with torch.no_grad():
|
| 9 |
-
|
| 10 |
-
scores, _ = model(features_tensor)
|
| 11 |
return scores.squeeze().cpu().numpy()
|
| 12 |
|
| 13 |
-
|
| 14 |
def get_selected_indices(scores, picks, threshold=SCORE_THRESHOLD):
|
| 15 |
return [picks[i] for i, score in enumerate(scores) if score >= threshold]
|
| 16 |
|
|
|
|
| 1 |
import cv2
|
| 2 |
import torch
|
| 3 |
from config import SCORE_THRESHOLD
|
| 4 |
+
from services.model_loader import load_model
|
| 5 |
|
| 6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
+
model = load_model("Model/epoch-199.pkl")
|
| 8 |
+
model = model.to(device)
|
| 9 |
+
model = model.eval()
|
| 10 |
+
|
| 11 |
+
def get_scores(features):
|
| 12 |
+
# features.shape: (N, 1024)
|
| 13 |
with torch.no_grad():
|
| 14 |
+
scores, _ = model(features)
|
|
|
|
| 15 |
return scores.squeeze().cpu().numpy()
|
| 16 |
|
|
|
|
| 17 |
def get_selected_indices(scores, picks, threshold=SCORE_THRESHOLD):
|
| 18 |
return [picks[i] for i, score in enumerate(scores) if score >= threshold]
|
| 19 |
|