Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -53,13 +53,12 @@ EMBEDDERS = {
|
|
53 |
_CORPUS_CACHE = {}
|
54 |
|
55 |
def ensure_corpus_embeddings(model_name: str, texts: list[str]):
|
56 |
-
"""Compute & cache corpus embeddings for a given model name."""
|
57 |
if model_name in _CORPUS_CACHE:
|
58 |
return _CORPUS_CACHE[model_name]
|
59 |
model_id = EMBEDDERS[model_name]
|
60 |
model = load_sentence_model(model_id)
|
61 |
-
|
62 |
-
|
63 |
_CORPUS_CACHE[model_name] = emb
|
64 |
return emb
|
65 |
|
@@ -89,7 +88,14 @@ def top3_for_each_model(user_input: str, selected_models: list[str]):
|
|
89 |
|
90 |
def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int, temperature: float, scorer_model_name: str):
|
91 |
gen = load_generator()
|
92 |
-
outputs = gen(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
candidates = [o["generated_text"].strip() for o in outputs]
|
94 |
|
95 |
scorer_id = EMBEDDERS[scorer_model_name]
|
@@ -128,7 +134,7 @@ Small, reliable demo for your final project:
|
|
128 |
)
|
129 |
|
130 |
run_btn = gr.Button("🔎 Find Top‑3 Similar Tweets")
|
131 |
-
table_out = gr.Dataframe(interactive=False,
|
132 |
|
133 |
run_btn.click(top3_for_each_model, inputs=[test_input, models], outputs=table_out)
|
134 |
|
@@ -144,7 +150,7 @@ Small, reliable demo for your final project:
|
|
144 |
gen_btn = gr.Button("✨ Generate & Score")
|
145 |
best_txt = gr.Textbox(label="Best generated tweet")
|
146 |
best_score = gr.Number(label="Similarity (best)")
|
147 |
-
gen_table = gr.Dataframe(interactive=False,
|
148 |
|
149 |
gen_btn.click(generate_and_pick_best,
|
150 |
inputs=[test_input, n_seq, max_len, temp, scorer_model],
|
|
|
53 |
_CORPUS_CACHE = {}
|
54 |
|
55 |
def ensure_corpus_embeddings(model_name: str, texts: list[str]):
|
|
|
56 |
if model_name in _CORPUS_CACHE:
|
57 |
return _CORPUS_CACHE[model_name]
|
58 |
model_id = EMBEDDERS[model_name]
|
59 |
model = load_sentence_model(model_id)
|
60 |
+
emb = model.encode(texts, show_progress_bar=False,
|
61 |
+
convert_to_numpy=True, normalize_embeddings=True)
|
62 |
_CORPUS_CACHE[model_name] = emb
|
63 |
return emb
|
64 |
|
|
|
88 |
|
89 |
def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int, temperature: float, scorer_model_name: str):
|
90 |
gen = load_generator()
|
91 |
+
outputs = gen(
|
92 |
+
prompt,
|
93 |
+
max_length=max_length,
|
94 |
+
num_return_sequences=n_sequences,
|
95 |
+
do_sample=True,
|
96 |
+
temperature=temperature,
|
97 |
+
pad_token_id=50256, # <- added
|
98 |
+
)
|
99 |
candidates = [o["generated_text"].strip() for o in outputs]
|
100 |
|
101 |
scorer_id = EMBEDDERS[scorer_model_name]
|
|
|
134 |
)
|
135 |
|
136 |
run_btn = gr.Button("🔎 Find Top‑3 Similar Tweets")
|
137 |
+
table_out = gr.Dataframe(interactive=False, overflow_row_behaviour="paginate") # <- changed
|
138 |
|
139 |
run_btn.click(top3_for_each_model, inputs=[test_input, models], outputs=table_out)
|
140 |
|
|
|
150 |
gen_btn = gr.Button("✨ Generate & Score")
|
151 |
best_txt = gr.Textbox(label="Best generated tweet")
|
152 |
best_score = gr.Number(label="Similarity (best)")
|
153 |
+
gen_table = gr.Dataframe(interactive=False, overflow_row_behaviour="paginate") # <- changed
|
154 |
|
155 |
gen_btn.click(generate_and_pick_best,
|
156 |
inputs=[test_input, n_seq, max_len, temp, scorer_model],
|