Salimtoama15 commited on
Commit
839d7f0
·
verified ·
1 Parent(s): 40d9148

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -6
app.py CHANGED
@@ -53,13 +53,12 @@ EMBEDDERS = {
53
  _CORPUS_CACHE = {}
54
 
55
  def ensure_corpus_embeddings(model_name: str, texts: list[str]):
56
- """Compute & cache corpus embeddings for a given model name."""
57
  if model_name in _CORPUS_CACHE:
58
  return _CORPUS_CACHE[model_name]
59
  model_id = EMBEDDERS[model_name]
60
  model = load_sentence_model(model_id)
61
- # encode with no progress bar to keep logs clean on Spaces
62
- emb = model.encode(texts, show_progress_bar=False, convert_to_numpy=True, normalize_embeddings=True)
63
  _CORPUS_CACHE[model_name] = emb
64
  return emb
65
 
@@ -89,7 +88,14 @@ def top3_for_each_model(user_input: str, selected_models: list[str]):
89
 
90
  def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int, temperature: float, scorer_model_name: str):
91
  gen = load_generator()
92
- outputs = gen(prompt, max_length=max_length, num_return_sequences=n_sequences, do_sample=True, temperature=temperature)
 
 
 
 
 
 
 
93
  candidates = [o["generated_text"].strip() for o in outputs]
94
 
95
  scorer_id = EMBEDDERS[scorer_model_name]
@@ -128,7 +134,7 @@ Small, reliable demo for your final project:
128
  )
129
 
130
  run_btn = gr.Button("🔎 Find Top‑3 Similar Tweets")
131
- table_out = gr.Dataframe(interactive=False, wrap=True)
132
 
133
  run_btn.click(top3_for_each_model, inputs=[test_input, models], outputs=table_out)
134
 
@@ -144,7 +150,7 @@ Small, reliable demo for your final project:
144
  gen_btn = gr.Button("✨ Generate & Score")
145
  best_txt = gr.Textbox(label="Best generated tweet")
146
  best_score = gr.Number(label="Similarity (best)")
147
- gen_table = gr.Dataframe(interactive=False, wrap=True)
148
 
149
  gen_btn.click(generate_and_pick_best,
150
  inputs=[test_input, n_seq, max_len, temp, scorer_model],
 
53
  _CORPUS_CACHE = {}
54
 
55
  def ensure_corpus_embeddings(model_name: str, texts: list[str]):
 
56
  if model_name in _CORPUS_CACHE:
57
  return _CORPUS_CACHE[model_name]
58
  model_id = EMBEDDERS[model_name]
59
  model = load_sentence_model(model_id)
60
+ emb = model.encode(texts, show_progress_bar=False,
61
+ convert_to_numpy=True, normalize_embeddings=True)
62
  _CORPUS_CACHE[model_name] = emb
63
  return emb
64
 
 
88
 
89
  def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int, temperature: float, scorer_model_name: str):
90
  gen = load_generator()
91
+ outputs = gen(
92
+ prompt,
93
+ max_length=max_length,
94
+ num_return_sequences=n_sequences,
95
+ do_sample=True,
96
+ temperature=temperature,
97
+ pad_token_id=50256, # <- added
98
+ )
99
  candidates = [o["generated_text"].strip() for o in outputs]
100
 
101
  scorer_id = EMBEDDERS[scorer_model_name]
 
134
  )
135
 
136
  run_btn = gr.Button("🔎 Find Top‑3 Similar Tweets")
137
+ table_out = gr.Dataframe(interactive=False, overflow_row_behaviour="paginate") # <- changed
138
 
139
  run_btn.click(top3_for_each_model, inputs=[test_input, models], outputs=table_out)
140
 
 
150
  gen_btn = gr.Button("✨ Generate & Score")
151
  best_txt = gr.Textbox(label="Best generated tweet")
152
  best_score = gr.Number(label="Similarity (best)")
153
+ gen_table = gr.Dataframe(interactive=False, overflow_row_behaviour="paginate") # <- changed
154
 
155
  gen_btn.click(generate_and_pick_best,
156
  inputs=[test_input, n_seq, max_len, temp, scorer_model],