Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,15 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
dataset = load_dataset("sentiment140")
|
7 |
-
|
8 |
-
# Convert to pandas
|
9 |
-
import pandas as pd
|
10 |
-
df = dataset["train"].to_pandas()
|
11 |
-
df.head()
|
12 |
-
# Drop null values in text and sentiment
|
13 |
-
df.dropna(subset=["text", "sentiment"], inplace=True)
|
14 |
-
|
15 |
-
# Filter tweets with reasonable length
|
16 |
-
df["text_length"] = df["text"].apply(len)
|
17 |
-
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)]
|
18 |
-
|
19 |
-
# Clean the text
|
20 |
-
import re
|
21 |
-
def clean_text(text):
|
22 |
text = text.lower()
|
23 |
text = re.sub(r"http\S+", "", text)
|
24 |
text = re.sub(r"@\w+", "", text)
|
@@ -27,83 +18,140 @@ def clean_text(text):
|
|
27 |
text = re.sub(r"\s+", " ", text).strip()
|
28 |
return text
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
df["
|
37 |
-
df["
|
38 |
-
|
39 |
-
df
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
}
|
56 |
-
# Compute and compare similarity for one test input
|
57 |
-
test_input = "I am so happy with this product"
|
58 |
-
|
59 |
-
def get_top3_similarities(model, texts, test_input):
|
60 |
-
text_embeddings = model.encode(texts, show_progress_bar=True)
|
61 |
-
input_embedding = model.encode([test_input])
|
62 |
-
similarities = cosine_similarity(input_embedding, text_embeddings)[0]
|
63 |
-
top_indices = similarities.argsort()[-3:][::-1]
|
64 |
-
return [(i, texts[i], similarities[i]) for i in top_indices]
|
65 |
-
|
66 |
-
# Try each model
|
67 |
-
results = {}
|
68 |
-
for name, model in models.items():
|
69 |
-
print(f"\n🔎 Top 3 results from: {name}")
|
70 |
-
top3 = get_top3_similarities(model, texts, test_input)
|
71 |
-
for rank, (idx, text, score) in enumerate(top3, start=1):
|
72 |
-
print(f"{rank}. [{score:.4f}] {text}")
|
73 |
-
results[name] = top3
|
74 |
-
!pip install -U transformers
|
75 |
-
from transformers import pipeline, set_seed
|
76 |
-
|
77 |
-
# Load small GPT-2 model for text generation
|
78 |
-
generator = pipeline("text-generation", model="distilgpt2")
|
79 |
-
set_seed(42) # reproducible results
|
80 |
-
# Example user input
|
81 |
-
test_input = "I'm feeling amazing about our product launch!"
|
82 |
-
# Generate synthetic tweets
|
83 |
-
synthetic_outputs = generator(
|
84 |
-
test_input,
|
85 |
-
max_length=50,
|
86 |
-
num_return_sequences=10,
|
87 |
-
do_sample=True,
|
88 |
-
temperature=0.9
|
89 |
-
)
|
90 |
-
|
91 |
-
# Extract just the generated text
|
92 |
-
generated_tweets = [output["generated_text"].strip() for output in synthetic_outputs]
|
93 |
-
for i, tweet in enumerate(generated_tweets, 1):
|
94 |
-
print(f"{i}. {tweet}\n")
|
95 |
-
from sentence_transformers import SentenceTransformer
|
96 |
-
|
97 |
-
# Load your best model again (MiniLM is a good choice)
|
98 |
-
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
99 |
-
# Embed input and generated tweets
|
100 |
-
input_vec = embedding_model.encode([test_input])
|
101 |
-
gen_vecs = embedding_model.encode(generated_tweets)
|
102 |
-
|
103 |
-
# Compute similarity and select best
|
104 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
105 |
-
similarities = cosine_similarity(input_vec, gen_vecs)[0]
|
106 |
-
top_index = similarities.argmax()
|
107 |
-
best_generated = generated_tweets[top_index]
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, re, functools, numpy as np, pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
from datasets import load_dataset
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
|
6 |
+
# -------- Config (safe defaults for CPU Spaces) --------
|
7 |
+
SAMPLE_SIZE = int(os.getenv("SAMPLE_SIZE", "5000"))
|
8 |
+
RANDOM_STATE = 42
|
9 |
+
DEFAULT_INPUT = "I am so happy with this product"
|
10 |
|
11 |
+
# -------- Text cleaning (yours) --------
|
12 |
+
def clean_text(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
text = text.lower()
|
14 |
text = re.sub(r"http\S+", "", text)
|
15 |
text = re.sub(r"@\w+", "", text)
|
|
|
18 |
text = re.sub(r"\s+", " ", text).strip()
|
19 |
return text
|
20 |
|
21 |
+
# -------- Load sample data once --------
|
22 |
+
@functools.lru_cache(maxsize=1)
|
23 |
+
def load_sample_df():
|
24 |
+
ds = load_dataset("sentiment140", split="train")
|
25 |
+
df = ds.to_pandas()
|
26 |
+
df = df.dropna(subset=["text", "sentiment"]).copy()
|
27 |
+
df["text_length"] = df["text"].str.len()
|
28 |
+
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)].copy()
|
29 |
+
df["clean_text"] = df["text"].apply(clean_text)
|
30 |
+
df = df.sample(min(SAMPLE_SIZE, len(df)), random_state=RANDOM_STATE).reset_index(drop=True)
|
31 |
+
return df[["text", "clean_text"]]
|
32 |
+
|
33 |
+
# -------- Lazy model loaders --------
|
34 |
+
@functools.lru_cache(maxsize=None)
|
35 |
+
def load_sentence_model(model_id: str):
|
36 |
+
from sentence_transformers import SentenceTransformer
|
37 |
+
return SentenceTransformer(model_id)
|
38 |
+
|
39 |
+
@functools.lru_cache(maxsize=None)
|
40 |
+
def load_generator():
|
41 |
+
from transformers import pipeline, set_seed
|
42 |
+
set_seed(RANDOM_STATE)
|
43 |
+
return pipeline("text-generation", model="distilgpt2")
|
44 |
+
|
45 |
+
# Map names → HF ids
|
46 |
+
EMBEDDERS = {
|
47 |
+
"MiniLM (fast)": "sentence-transformers/all-MiniLM-L6-v2",
|
48 |
+
"MPNet (heavier)": "sentence-transformers/all-mpnet-base-v2",
|
49 |
+
"DistilRoBERTa (paraphrase)": "sentence-transformers/paraphrase-distilroberta-base-v1",
|
50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Cache for precomputed corpus embeddings per model
|
53 |
+
_CORPUS_CACHE = {}
|
54 |
+
|
55 |
+
def ensure_corpus_embeddings(model_name: str, texts: list[str]):
|
56 |
+
"""Compute & cache corpus embeddings for a given model name."""
|
57 |
+
if model_name in _CORPUS_CACHE:
|
58 |
+
return _CORPUS_CACHE[model_name]
|
59 |
+
model_id = EMBEDDERS[model_name]
|
60 |
+
model = load_sentence_model(model_id)
|
61 |
+
# encode with no progress bar to keep logs clean on Spaces
|
62 |
+
emb = model.encode(texts, show_progress_bar=False, convert_to_numpy=True, normalize_embeddings=True)
|
63 |
+
_CORPUS_CACHE[model_name] = emb
|
64 |
+
return emb
|
65 |
+
|
66 |
+
def top3_for_each_model(user_input: str, selected_models: list[str]):
|
67 |
+
df = load_sample_df()
|
68 |
+
texts = df["clean_text"].tolist()
|
69 |
+
rows = []
|
70 |
+
for name in selected_models:
|
71 |
+
try:
|
72 |
+
model = load_sentence_model(EMBEDDERS[name])
|
73 |
+
corpus_emb = ensure_corpus_embeddings(name, texts)
|
74 |
+
q = model.encode([clean_text(user_input)], show_progress_bar=False, normalize_embeddings=True)
|
75 |
+
sims = cosine_similarity(q, corpus_emb)[0]
|
76 |
+
top_idx = sims.argsort()[-3:][::-1]
|
77 |
+
for rank, i in enumerate(top_idx, start=1):
|
78 |
+
rows.append({
|
79 |
+
"Model": name,
|
80 |
+
"Rank": rank,
|
81 |
+
"Similarity": float(sims[i]),
|
82 |
+
"Tweet (clean)": texts[i],
|
83 |
+
"Tweet (orig)": df.loc[i, "text"]
|
84 |
+
})
|
85 |
+
except Exception as e:
|
86 |
+
rows.append({"Model": name, "Rank": "-", "Similarity": "-", "Tweet (clean)": f"[Error: {e}]", "Tweet (orig)": ""})
|
87 |
+
out = pd.DataFrame(rows, columns=["Model","Rank","Similarity","Tweet (clean)","Tweet (orig)"])
|
88 |
+
return out
|
89 |
+
|
90 |
+
def generate_and_pick_best(prompt: str, n_sequences: int, max_length: int, temperature: float, scorer_model_name: str):
|
91 |
+
gen = load_generator()
|
92 |
+
outputs = gen(prompt, max_length=max_length, num_return_sequences=n_sequences, do_sample=True, temperature=temperature)
|
93 |
+
candidates = [o["generated_text"].strip() for o in outputs]
|
94 |
+
|
95 |
+
scorer_id = EMBEDDERS[scorer_model_name]
|
96 |
+
scorer = load_sentence_model(scorer_id)
|
97 |
+
q = scorer.encode([prompt], show_progress_bar=False, normalize_embeddings=True)
|
98 |
+
cand_vecs = scorer.encode(candidates, show_progress_bar=False, normalize_embeddings=True)
|
99 |
+
sims = cosine_similarity(q, cand_vecs)[0]
|
100 |
+
best_idx = int(sims.argmax())
|
101 |
+
table = pd.DataFrame({
|
102 |
+
"Rank": np.argsort(-sims)+1,
|
103 |
+
"Similarity": np.sort(sims)[::-1],
|
104 |
+
"Generated Tweet": [c for _, c in sorted(zip(-sims, candidates))]
|
105 |
+
})
|
106 |
+
best = candidates[best_idx]
|
107 |
+
best_score = float(sims[best_idx])
|
108 |
+
return best, best_score, table
|
109 |
+
|
110 |
+
with gr.Blocks(title="Sentiment140 Embeddings + Generation") as demo:
|
111 |
+
gr.Markdown(
|
112 |
+
"""
|
113 |
+
# 🧪 Sentiment140 — Embeddings & Tweet Generator
|
114 |
+
Small, reliable demo for your final project:
|
115 |
+
1) Compare top-3 most similar tweets from **Sentiment140** across embedding models.
|
116 |
+
2) Generate synthetic tweets with **DistilGPT‑2** and auto‑pick the best by semantic similarity.
|
117 |
+
|
118 |
+
> Tip: Start with **MiniLM (fast)** on CPU Spaces. Add MPNet/DistilRoBERTa if you have a GPU.
|
119 |
+
"""
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
test_input = gr.Textbox(label="Your input", value=DEFAULT_INPUT, lines=2)
|
124 |
+
models = gr.CheckboxGroup(
|
125 |
+
choices=list(EMBEDDERS.keys()),
|
126 |
+
value=["MiniLM (fast)"],
|
127 |
+
label="Embedding models to compare"
|
128 |
+
)
|
129 |
+
|
130 |
+
run_btn = gr.Button("🔎 Find Top‑3 Similar Tweets")
|
131 |
+
table_out = gr.Dataframe(interactive=False, wrap=True)
|
132 |
+
|
133 |
+
run_btn.click(top3_for_each_model, inputs=[test_input, models], outputs=table_out)
|
134 |
+
|
135 |
+
gr.Markdown("---")
|
136 |
+
gr.Markdown("## 📝 Generate Tweets and Pick the Best (by similarity to your input)")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
n_seq = gr.Slider(3, 15, value=8, step=1, label="Number of candidates")
|
140 |
+
max_len = gr.Slider(30, 120, value=60, step=1, label="Max length")
|
141 |
+
temp = gr.Slider(0.5, 1.5, value=0.9, step=0.05, label="Temperature")
|
142 |
+
scorer_model = gr.Dropdown(list(EMBEDDERS.keys()), value="MiniLM (fast)", label="Scorer embedding")
|
143 |
+
|
144 |
+
gen_btn = gr.Button("✨ Generate & Score")
|
145 |
+
best_txt = gr.Textbox(label="Best generated tweet")
|
146 |
+
best_score = gr.Number(label="Similarity (best)")
|
147 |
+
gen_table = gr.Dataframe(interactive=False, wrap=True)
|
148 |
+
|
149 |
+
gen_btn.click(generate_and_pick_best,
|
150 |
+
inputs=[test_input, n_seq, max_len, temp, scorer_model],
|
151 |
+
outputs=[best_txt, best_score, gen_table])
|
152 |
+
|
153 |
+
gr.Markdown("---")
|
154 |
+
gr.Markdown("## 🖼️ Project Photo (optional, just to display it in the app)")
|
155 |
+
photo = gr.Image(label="Upload your project photo (jpg/png)", type="filepath")
|
156 |
+
|
157 |
+
demo.queue(max_size=32).launch()
|