Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,23 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
4 |
from datasets import load_dataset
|
5 |
-
|
6 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
-
from transformers import pipeline, set_seed
|
8 |
-
import numpy as np
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
df = dataset["train"].to_pandas()
|
17 |
-
df.dropna(subset=["text", "sentiment"], inplace=True)
|
18 |
-
df["text_length"] = df["text"].apply(len)
|
19 |
-
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)]
|
20 |
-
df["clean_text"] = df["text"].apply(clean_text)
|
21 |
-
return df
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def clean_text(text):
|
24 |
text = text.lower()
|
25 |
text = re.sub(r"http\S+", "", text)
|
@@ -29,32 +27,83 @@ def clean_text(text):
|
|
29 |
text = re.sub(r"\s+", " ", text).strip()
|
30 |
return text
|
31 |
|
32 |
-
|
33 |
-
df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
sample_df = df.sample(5000, random_state=42).reset_index(drop=True)
|
35 |
texts = sample_df["clean_text"].tolist()
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
input_embedding = embedding_model.encode([text_input])
|
50 |
similarities = cosine_similarity(input_embedding, text_embeddings)[0]
|
51 |
top_indices = similarities.argsort()[-3:][::-1]
|
52 |
-
return [texts[i] for i in top_indices]
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install datasets library
|
2 |
+
!pip install -U datasets
|
3 |
+
|
4 |
+
# Load Sentiment140 dataset
|
5 |
from datasets import load_dataset
|
6 |
+
dataset = load_dataset("sentiment140")
|
|
|
|
|
|
|
7 |
|
8 |
+
# Convert to pandas
|
9 |
+
import pandas as pd
|
10 |
+
df = dataset["train"].to_pandas()
|
11 |
+
df.head()
|
12 |
+
# Drop null values in text and sentiment
|
13 |
+
df.dropna(subset=["text", "sentiment"], inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Filter tweets with reasonable length
|
16 |
+
df["text_length"] = df["text"].apply(len)
|
17 |
+
df = df[(df["text_length"] >= 5) & (df["text_length"] <= 280)]
|
18 |
+
|
19 |
+
# Clean the text
|
20 |
+
import re
|
21 |
def clean_text(text):
|
22 |
text = text.lower()
|
23 |
text = re.sub(r"http\S+", "", text)
|
|
|
27 |
text = re.sub(r"\s+", " ", text).strip()
|
28 |
return text
|
29 |
|
30 |
+
df["clean_text"] = df["text"].apply(clean_text)
|
31 |
+
df[["text", "clean_text"]].head()
|
32 |
+
# Convert sentiment labels from numbers to text
|
33 |
+
def map_sentiment(label):
|
34 |
+
return "negative" if label == 0 else "neutral" if label == 2 else "positive"
|
35 |
+
|
36 |
+
df["sentiment_label"] = df["sentiment"].apply(map_sentiment)
|
37 |
+
df["sentiment_label"].value_counts()
|
38 |
+
# Save for future use
|
39 |
+
df[["clean_text", "sentiment_label"]].to_csv("cleaned_sentiment140.csv", index=False)
|
40 |
+
print("Cleaned data saved!")
|
41 |
+
!pip install -U sentence-transformers
|
42 |
+
from sentence_transformers import SentenceTransformer
|
43 |
+
import numpy as np
|
44 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
45 |
+
|
46 |
+
# Use a small sample for speed (feel free to increase)
|
47 |
sample_df = df.sample(5000, random_state=42).reset_index(drop=True)
|
48 |
texts = sample_df["clean_text"].tolist()
|
49 |
|
50 |
+
# Load 3 different embedding models
|
51 |
+
models = {
|
52 |
+
"MiniLM": SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2"),
|
53 |
+
"MPNet": SentenceTransformer("sentence-transformers/all-mpnet-base-v2"),
|
54 |
+
"DistilRoBERTa": SentenceTransformer("sentence-transformers/paraphrase-distilroberta-base-v1")
|
55 |
+
}
|
56 |
+
# Compute and compare similarity for one test input
|
57 |
+
test_input = "I am so happy with this product"
|
58 |
+
|
59 |
+
def get_top3_similarities(model, texts, test_input):
|
60 |
+
text_embeddings = model.encode(texts, show_progress_bar=True)
|
61 |
+
input_embedding = model.encode([test_input])
|
|
|
62 |
similarities = cosine_similarity(input_embedding, text_embeddings)[0]
|
63 |
top_indices = similarities.argsort()[-3:][::-1]
|
64 |
+
return [(i, texts[i], similarities[i]) for i in top_indices]
|
65 |
+
|
66 |
+
# Try each model
|
67 |
+
results = {}
|
68 |
+
for name, model in models.items():
|
69 |
+
print(f"\n🔎 Top 3 results from: {name}")
|
70 |
+
top3 = get_top3_similarities(model, texts, test_input)
|
71 |
+
for rank, (idx, text, score) in enumerate(top3, start=1):
|
72 |
+
print(f"{rank}. [{score:.4f}] {text}")
|
73 |
+
results[name] = top3
|
74 |
+
!pip install -U transformers
|
75 |
+
from transformers import pipeline, set_seed
|
76 |
+
|
77 |
+
# Load small GPT-2 model for text generation
|
78 |
+
generator = pipeline("text-generation", model="distilgpt2")
|
79 |
+
set_seed(42) # reproducible results
|
80 |
+
# Example user input
|
81 |
+
test_input = "I'm feeling amazing about our product launch!"
|
82 |
+
# Generate synthetic tweets
|
83 |
+
synthetic_outputs = generator(
|
84 |
+
test_input,
|
85 |
+
max_length=50,
|
86 |
+
num_return_sequences=10,
|
87 |
+
do_sample=True,
|
88 |
+
temperature=0.9
|
89 |
)
|
90 |
+
|
91 |
+
# Extract just the generated text
|
92 |
+
generated_tweets = [output["generated_text"].strip() for output in synthetic_outputs]
|
93 |
+
for i, tweet in enumerate(generated_tweets, 1):
|
94 |
+
print(f"{i}. {tweet}\n")
|
95 |
+
from sentence_transformers import SentenceTransformer
|
96 |
+
|
97 |
+
# Load your best model again (MiniLM is a good choice)
|
98 |
+
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
99 |
+
# Embed input and generated tweets
|
100 |
+
input_vec = embedding_model.encode([test_input])
|
101 |
+
gen_vecs = embedding_model.encode(generated_tweets)
|
102 |
+
|
103 |
+
# Compute similarity and select best
|
104 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
105 |
+
similarities = cosine_similarity(input_vec, gen_vecs)[0]
|
106 |
+
top_index = similarities.argmax()
|
107 |
+
best_generated = generated_tweets[top_index]
|
108 |
+
|
109 |
+
print(f"✅ Best AI-generated tweet:\n[{similarities[top_index]:.4f}] {best_generated}")
|