TTI / app.py
Sam3838's picture
Update app.py
dbf9089 verified
import time
import logging
import os
import sys
import subprocess
from contextlib import asynccontextmanager
from typing import List
from enum import Enum
from pydantic import BaseModel
# Install required packages
def install_packages():
"""Install required packages using pip"""
packages = [
"fastapi",
"uvicorn[standard]",
"pillow",
"huggingface_hub",
"pydantic"
]
for package in packages:
try:
# Check if package is already installed
if package == "uvicorn[standard]":
__import__("uvicorn")
elif package == "huggingface_hub":
__import__("huggingface_hub")
else:
__import__(package.replace("-", "_"))
print(f"{package} already installed")
except ImportError:
print(f"Installing {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
# Install packages before importing
install_packages()
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
# Define models directly in the file
class ResponseFormat(str, Enum):
URL = "url"
B64_JSON = "b64_json"
class ImageGenerationRequest(BaseModel):
prompt: str
model: str = "dall-e-3"
n: int = 1
size: str = "1024x1024"
quality: str = "standard"
response_format: ResponseFormat = ResponseFormat.URL
class ImageData(BaseModel):
url: str = None
b64_json: str = None
revised_prompt: str = None
class ImageGenerationResponse(BaseModel):
created: int
data: List[ImageData]
class ErrorResponse(BaseModel):
error: dict
class ModelInfo(BaseModel):
id: str
created: int
owned_by: str
class ModelsResponse(BaseModel):
data: List[ModelInfo]
# Import the modified image generator
from image_generator import ImageGenerator
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global image generator instance
image_generator = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan management"""
global image_generator
logger.info("Starting TTI Frame API...")
# Initialize image generator
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
logger.warning("HF_TOKEN environment variable not set. Image generation may fail.")
image_generator = ImageGenerator(hf_token=hf_token)
# Set base URL for serving images
base_url = os.getenv("BASE_URL", "http://localhost:8000")
image_generator.set_config(base_url=base_url)
# Mount the temporary directory for static files
app.mount("/images", StaticFiles(directory=image_generator.output_dir), name="images")
logger.info(f"Image generator initialized with output directory: {image_generator.output_dir}")
yield
logger.info("Shutting down TTI Frame API...")
if image_generator:
image_generator.cleanup()
# Create FastAPI app
app = FastAPI(
title="TTI Frame - OpenAI Compatible Text-to-Image API",
description="A FastAPI wrapper providing OpenAI-compatible endpoints for text-to-image generation",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure as needed
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
"""Root endpoint"""
return {
"message": "TTI Frame - OpenAI Compatible Text-to-Image API",
"version": "1.0.0",
"docs": "/docs",
"output_dir": image_generator.output_dir if image_generator else "Not initialized"
}
@app.get("/v1/models", response_model=ModelsResponse)
async def list_models():
"""List available models (OpenAI compatible)"""
models = [
ModelInfo(
id="dall-e-3",
created=1677649963,
owned_by="tti-frame"
),
ModelInfo(
id="dall-e-2",
created=1677649963,
owned_by="tti-frame"
),
ModelInfo(
id="black-forest-labs/flux-schnell",
created=1677649963,
owned_by="tti-frame"
)
]
return ModelsResponse(data=models)
@app.post("/v1/images/generations", response_model=ImageGenerationResponse)
async def create_image(request: ImageGenerationRequest):
"""
Generate images from text prompts (OpenAI compatible)
Creates images based on a text prompt using advanced diffusion models.
Supports various sizes, qualities, and response formats.
"""
if not image_generator:
raise HTTPException(
status_code=500,
detail="Image generator not initialized. Check HF_TOKEN environment variable."
)
try:
logger.info(f"Received image generation request: {request.prompt[:50]}...")
# Validate request
if not request.prompt or not request.prompt.strip():
raise HTTPException(
status_code=400,
detail="Prompt cannot be empty"
)
if len(request.prompt) > 4000:
raise HTTPException(
status_code=400,
detail="Prompt too long. Maximum 4000 characters allowed."
)
# Map OpenAI model names to HuggingFace models
model_mapping = {
"dall-e-3": "black-forest-labs/flux-schnell",
"dall-e-2": "black-forest-labs/flux-schnell",
}
# Update request model if needed
if request.model in model_mapping:
request.model = model_mapping[request.model]
# Generate images
image_data = await image_generator.generate_images(request)
response = ImageGenerationResponse(
created=int(time.time()),
data=image_data
)
logger.info(f"Successfully generated {len(image_data)} images")
return response
except HTTPException:
raise
except Exception as e:
logger.error(f"Image generation failed: {e}")
raise HTTPException(
status_code=500,
detail=f"Image generation failed: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"timestamp": int(time.time()),
"generator_initialized": image_generator is not None,
"output_dir": image_generator.output_dir if image_generator else None
}
@app.get("/config")
async def get_config():
"""Get current configuration"""
if not image_generator:
return {"error": "Image generator not initialized"}
return {
"output_dir": image_generator.output_dir,
"base_url": image_generator.base_url,
"default_model": image_generator.default_model,
"hf_token_set": bool(image_generator.hf_token)
}
@app.post("/config")
async def update_config(hf_token: str = None, base_url: str = None, default_model: str = None):
"""Update configuration"""
if not image_generator:
raise HTTPException(status_code=500, detail="Image generator not initialized")
image_generator.set_config(
hf_token=hf_token,
base_url=base_url,
default_model=default_model
)
return {"message": "Configuration updated successfully"}
@app.exception_handler(Exception)
async def global_exception_handler(request, exc):
"""Global exception handler"""
logger.error(f"Unhandled exception: {exc}")
return JSONResponse(
status_code=500,
content=ErrorResponse(
error={
"message": "Internal server error",
"type": "server_error",
"code": "internal_error"
}
).dict()
)
if __name__ == "__main__":
# Set environment variables if not already set
if not os.getenv("HF_TOKEN"):
print("Warning: HF_TOKEN environment variable not set.")
print("Please set it with: export HF_TOKEN=your_huggingface_token")
uvicorn.run(
"main:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
)