|
import base64 |
|
import io |
|
import os |
|
import sys |
|
import time |
|
import logging |
|
import tempfile |
|
import subprocess |
|
from typing import List |
|
from enum import Enum |
|
|
|
|
|
def install_packages(): |
|
"""Install required packages using pip""" |
|
packages = [ |
|
"pillow", |
|
"huggingface_hub", |
|
"pydantic" |
|
] |
|
|
|
for package in packages: |
|
try: |
|
__import__(package.replace("-", "_")) |
|
print(f"{package} already installed") |
|
except ImportError: |
|
print(f"Installing {package}...") |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", package]) |
|
|
|
|
|
install_packages() |
|
|
|
from PIL import Image |
|
from huggingface_hub import InferenceClient |
|
from pydantic import BaseModel |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class ResponseFormat(str, Enum): |
|
URL = "url" |
|
B64_JSON = "b64_json" |
|
|
|
class ImageGenerationRequest(BaseModel): |
|
prompt: str |
|
model: str = "black-forest-labs/flux-schnell" |
|
n: int = 1 |
|
size: str = "1024x1024" |
|
quality: str = "standard" |
|
response_format: ResponseFormat = ResponseFormat.URL |
|
|
|
class ImageData(BaseModel): |
|
url: str = None |
|
b64_json: str = None |
|
revised_prompt: str = None |
|
|
|
class ImageGenerator: |
|
"""Text-to-image generator using Hugging Face InferenceClient""" |
|
|
|
def __init__(self, hf_token: str = None): |
|
self.client = None |
|
self.hf_token = hf_token or os.getenv("HF_TOKEN") |
|
self.output_dir = tempfile.mkdtemp(prefix="image_gen_") |
|
self.base_url = "http://localhost:8000" |
|
self.default_model = "black-forest-labs/flux-schnell" |
|
self._ensure_output_dir() |
|
|
|
def _ensure_output_dir(self): |
|
"""Ensure output directory exists""" |
|
os.makedirs(self.output_dir, exist_ok=True) |
|
print(f"Using temporary directory: {self.output_dir}") |
|
|
|
def _get_client(self): |
|
"""Get or create the InferenceClient""" |
|
if self.client is None: |
|
if not self.hf_token: |
|
raise ValueError("HuggingFace token is required. Set HF_TOKEN environment variable or pass it to constructor.") |
|
|
|
self.client = InferenceClient( |
|
token=self.hf_token, |
|
) |
|
return self.client |
|
|
|
def _image_to_base64(self, image: Image.Image) -> str: |
|
"""Convert PIL Image to base64 string""" |
|
buffer = io.BytesIO() |
|
image.save(buffer, format="PNG") |
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
return img_str |
|
|
|
def _save_image(self, image: Image.Image, filename: str) -> str: |
|
"""Save image and return URL""" |
|
filepath = os.path.join(self.output_dir, filename) |
|
image.save(filepath) |
|
return f"{self.base_url}/images/{filename}" |
|
|
|
def set_config(self, hf_token: str = None, base_url: str = None, default_model: str = None): |
|
"""Set configuration parameters""" |
|
if hf_token: |
|
self.hf_token = hf_token |
|
self.client = None |
|
if base_url: |
|
self.base_url = base_url |
|
if default_model: |
|
self.default_model = default_model |
|
|
|
async def generate_images(self, request: ImageGenerationRequest) -> List[ImageData]: |
|
"""Generate images based on the request""" |
|
client = self._get_client() |
|
|
|
|
|
results = [] |
|
|
|
for i in range(request.n): |
|
try: |
|
logger.info(f"Generating image {i+1}/{request.n} for prompt: {request.prompt[:50]}...") |
|
|
|
|
|
image = client.text_to_image( |
|
request.prompt, |
|
model=request.model or self.default_model, |
|
) |
|
|
|
|
|
if request.response_format == ResponseFormat.B64_JSON: |
|
image_data = ImageData( |
|
b64_json=self._image_to_base64(image), |
|
revised_prompt=request.prompt |
|
) |
|
else: |
|
|
|
timestamp = int(time.time()) |
|
filename = f"generated_{timestamp}_{i}.png" |
|
url = self._save_image(image, filename) |
|
image_data = ImageData( |
|
url=url, |
|
revised_prompt=request.prompt |
|
) |
|
|
|
results.append(image_data) |
|
logger.info(f"Successfully generated image {i+1}/{request.n}") |
|
|
|
except Exception as e: |
|
logger.error(f"Failed to generate image {i+1}: {e}") |
|
|
|
continue |
|
|
|
if not results: |
|
raise Exception("Failed to generate any images") |
|
|
|
return results |
|
|
|
def cleanup(self): |
|
"""Cleanup resources and temporary directory""" |
|
self.client = None |
|
|
|
import shutil |
|
if os.path.exists(self.output_dir): |
|
shutil.rmtree(self.output_dir) |
|
print(f"Cleaned up temporary directory: {self.output_dir}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
generator = ImageGenerator() |
|
|
|
|
|
generator.set_config(hf_token="your_hf_token_here") |
|
|
|
|
|
request = ImageGenerationRequest( |
|
prompt="A beautiful sunset over mountains", |
|
n=1, |
|
response_format=ResponseFormat.URL |
|
) |
|
|
|
|
|
|
|
print("Image generator setup complete!") |