Spaces:
Running
on
Zero
Running
on
Zero
File size: 118,971 Bytes
e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 3164573 e153ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 |
import gradio as gr
import spaces
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline as hf_pipeline
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from torch.nn.functional import sigmoid
from collections import Counter
import logging
import traceback
import json
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {device}")
# Set up custom logging
class CustomFormatter(logging.Formatter):
"""Custom formatter with colors and better formatting"""
grey = "\x1b[38;21m"
blue = "\x1b[38;5;39m"
yellow = "\x1b[38;5;226m"
red = "\x1b[38;5;196m"
bold_red = "\x1b[31;1m"
reset = "\x1b[0m"
def format(self, record):
# Remove the logger name from the output
if record.levelno == logging.DEBUG:
return f"{self.blue}{record.getMessage()}{self.reset}"
elif record.levelno == logging.INFO:
return f"{self.grey}{record.getMessage()}{self.reset}"
elif record.levelno == logging.WARNING:
return f"{self.yellow}{record.getMessage()}{self.reset}"
elif record.levelno == logging.ERROR:
return f"{self.red}{record.getMessage()}{self.reset}"
elif record.levelno == logging.CRITICAL:
return f"{self.bold_red}{record.getMessage()}{self.reset}"
return record.getMessage()
# Setup logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Remove any existing handlers
logger.handlers = []
# Create console handler with custom formatter
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(CustomFormatter())
logger.addHandler(ch)
# Model initialization
model_name = "SamanthaStorm/tether-multilabel-v6"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
# sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment-v3").to(device)
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment-v3", use_fast=False)
sentiment_model.eval()
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True, # Get all emotion scores
top_k=None, # Don't limit to top k predictions
truncation=True,
device=0 if torch.cuda.is_available() else -1
)
# DARVO model
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1").to(device)
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
# Constants and Labels
LABELS = [
"recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness",
"blame shifting", "nonabusive", "projection", "insults",
"contradictory statements", "obscure language",
"veiled threats", "stalking language", "false concern",
"false equivalence", "future faking"
]
SENTIMENT_LABELS = ["supportive", "undermining"]
THRESHOLDS = {
"recovery phase": 0.278,
"control": 0.287,
"gaslighting": 0.144,
"guilt tripping": 0.220,
"dismissiveness": 0.142,
"blame shifting": 0.183,
"projection": 0.253,
"insults": 0.247,
"contradictory statements": 0.200,
"obscure language": 0.455,
"nonabusive": 0.281,
# NEW v6 patterns:
"veiled threats": 0.310,
"stalking language": 0.339,
"false concern": 0.334,
"false equivalence": 0.317,
"future faking": 0.385
}
PATTERN_WEIGHTS = {
"recovery phase": 0.7,
"control": 1.4,
"gaslighting": 1.3,
"guilt tripping": 1.2,
"dismissiveness": 0.9,
"blame shifting": 1.0,
"projection": 0.5,
"insults": 1.4,
"contradictory statements": 1.0,
"obscure language": 0.9,
"nonabusive": 0.0,
# NEW v6 patterns:
"veiled threats": 1.6, # High weight - very dangerous
"stalking language": 1.8, # Highest weight - extremely dangerous
"false concern": 1.1, # Moderate weight - manipulative
"false equivalence": 1.3, # Enhances DARVO detection
"future faking": 0.8 # Lower weight - manipulation tactic
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
RISK_STAGE_LABELS = {
1: "π Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "π₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "π§οΈ Risk Stage: Reconciliation\nThis message reflects a reset attemptβapologies or emotional repair without accountability.",
4: "πΈ Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
THREAT_MOTIFS = [
"i'll kill you", "i'm going to hurt you", "you're dead", "you won't survive this",
"i'll break your face", "i'll bash your head in", "i'll snap your neck",
"i'll come over there and make you shut up", "i'll knock your teeth out",
"you're going to bleed", "you want me to hit you?", "i won't hold back next time",
"i swear to god i'll beat you", "next time, i won't miss", "i'll make you scream",
"i know where you live", "i'm outside", "i'll be waiting", "i saw you with him",
"you can't hide from me", "i'm coming to get you", "i'll find you", "i know your schedule",
"i watched you leave", "i followed you home", "you'll regret this", "you'll be sorry",
"you're going to wish you hadn't", "you brought this on yourself", "don't push me",
"you have no idea what i'm capable of", "you better watch yourself",
"i don't care what happens to you anymore", "i'll make you suffer", "you'll pay for this",
"i'll never let you go", "you're nothing without me", "if you leave me, i'll kill myself",
"i'll ruin you", "i'll tell everyone what you did", "i'll make sure everyone knows",
"i'm going to destroy your name", "you'll lose everyone", "i'll expose you",
"your friends will hate you", "i'll post everything", "you'll be cancelled",
"you'll lose everything", "i'll take the house", "i'll drain your account",
"you'll never see a dime", "you'll be broke when i'm done", "i'll make sure you lose your job",
"i'll take your kids", "i'll make sure you have nothing", "you can't afford to leave me",
"don't make me do this", "you know what happens when i'm mad", "you're forcing my hand",
"if you just behaved, this wouldn't happen", "this is your fault",
"you're making me hurt you", "i warned you", "you should have listened"
]
# MOVED TO TOP LEVEL - Fixed tone severity mapping
TONE_SEVERITY = {
# Highest danger tones
"obsessive fixation": 4,
"menacing calm": 4,
"conditional menace": 4,
"surveillance intimacy": 4,
# High danger tones
"predatory concern": 3,
"victim cosplay": 3,
"entitled rage": 3,
"direct threat": 3,
# Moderate danger tones
"manipulative hope": 2,
"false vulnerability": 2,
"calculated coldness": 2,
"predictive punishment": 2,
# Existing tones (keep current mappings)
"emotional threat": 3,
"forced accountability flip": 3,
"performative regret": 2,
"coercive warmth": 2,
"cold invalidation": 2,
"weaponized sadness": 2,
"contradictory gaslight": 2,
# Low risk tones
"neutral": 0,
"genuine vulnerability": 0
}
# MOVED TO TOP LEVEL - Helper functions
def log_emotional_tone_usage(tone_tag, patterns):
"""Log tone usage for analytics"""
logger.debug(f"π Detected tone tag: {tone_tag} with patterns: {patterns}")
# Track dangerous tone combinations
dangerous_tones = [
"obsessive fixation", "menacing calm", "predatory concern",
"surveillance intimacy", "conditional menace", "victim cosplay"
]
if tone_tag in dangerous_tones:
logger.warning(f"β οΈ Dangerous emotional tone detected: {tone_tag}")
def calculate_tone_risk_boost(tone_tag):
"""Calculate risk boost based on emotional tone severity"""
return TONE_SEVERITY.get(tone_tag, 0)
def should_show_safety_planning(abuse_score, escalation_risk, detected_patterns):
"""Check if we should show safety planning"""
if escalation_risk in ["High", "Critical"]:
return True
if abuse_score >= 70:
return True
dangerous_patterns = ["stalking language", "veiled threats", "threats"]
if any(pattern in detected_patterns for pattern in dangerous_patterns):
return True
return False
def generate_simple_safety_plan(abuse_score, escalation_risk, detected_patterns):
"""Generate a basic safety plan"""
plan = "π‘οΈ **SAFETY PLANNING RECOMMENDED**\n\n"
if escalation_risk == "Critical" or abuse_score >= 85:
plan += "π¨ **CRITICAL SAFETY SITUATION**\n\n"
plan += "**IMMEDIATE ACTIONS:**\n"
plan += "β’ Contact domestic violence hotline: **1-800-799-7233** (24/7, free, confidential)\n"
plan += "β’ Text START to **88788** for crisis text support\n"
plan += "β’ Consider staying with trusted friends/family tonight\n"
plan += "β’ Keep phone charged and accessible\n"
plan += "β’ Have emergency bag ready (documents, medications, cash)\n"
plan += "\n**IF IN IMMEDIATE DANGER: Call 911**\n\n"
elif escalation_risk == "High" or abuse_score >= 70:
plan += "β οΈ **HIGH RISK SITUATION**\n\n"
plan += "**SAFETY STEPS:**\n"
plan += "β’ Contact domestic violence hotline for safety planning: **1-800-799-7233**\n"
plan += "β’ Identify 3 trusted people you can contact for help\n"
plan += "β’ Plan escape routes and transportation options\n"
plan += "β’ Document concerning behaviors with dates and details\n"
plan += "β’ Research legal protection options\n\n"
# Add pattern-specific advice
if "stalking language" in detected_patterns:
plan += "π **STALKING BEHAVIORS DETECTED:**\n"
plan += "β’ Vary your routines and routes\n"
plan += "β’ Check devices for tracking software\n"
plan += "β’ Keep record of all stalking incidents\n"
plan += "β’ Alert neighbors to watch for suspicious activity\n\n"
if "veiled threats" in detected_patterns:
plan += "β οΈ **THREATENING LANGUAGE IDENTIFIED:**\n"
plan += "β’ Take all threats seriously, even indirect ones\n"
plan += "β’ Document all threatening communications\n"
plan += "β’ Inform trusted people about threat patterns\n"
plan += "β’ Avoid being alone in isolated locations\n\n"
# Always include crisis resources
plan += "π **CRISIS RESOURCES (24/7):**\n"
plan += "β’ **National DV Hotline:** 1-800-799-7233\n"
plan += "β’ **Crisis Text Line:** Text START to 88788\n"
plan += "β’ **Online Chat:** thehotline.org\n"
plan += "β’ **Emergency:** Call 911\n\n"
plan += "π **Remember:** You are not alone. This is not your fault. You deserve to be safe."
return plan
def detect_rare_threats(text):
rare_threats = ["necktie party", "permanent solution", "final conversation"]
if any(threat in text.lower() for threat in rare_threats):
return [("veiled threats", 0.90, 1.6)]
return []
def detect_enhanced_threats(text, patterns):
"""Enhanced threat detection for v6 patterns"""
text_lower = text.lower()
enhanced_threats = []
# Stalking language indicators
stalking_phrases = [
"stop at nothing", "will find you", "know where you",
"watching you", "following you", "can't hide",
"i know your", "saw you with", "you belong to me"
]
# Veiled threat indicators
veiled_threat_phrases = [
"some people might", "things happen to people who",
"be careful", "hope nothing happens", "accidents happen",
"necktie party", "permanent solution", "wouldn't want"
]
# False concern indicators
false_concern_phrases = [
"just worried about", "concerned about your",
"someone needs to protect", "for your own good"
]
if any(phrase in text_lower for phrase in stalking_phrases):
enhanced_threats.append("stalking language")
if any(phrase in text_lower for phrase in veiled_threat_phrases):
enhanced_threats.append("veiled threats")
if any(phrase in text_lower for phrase in false_concern_phrases):
enhanced_threats.append("false concern")
return enhanced_threats
def calculate_enhanced_risk_level(abuse_score, detected_patterns, escalation_risk, darvo_score):
"""Enhanced risk calculation that properly weights dangerous patterns"""
# Start with base risk from escalation system
base_risk = escalation_risk
# CRITICAL PATTERNS - Auto-elevate to HIGH risk minimum
critical_patterns = ["stalking language", "veiled threats"]
has_critical = any(pattern in detected_patterns for pattern in critical_patterns)
# DANGEROUS COMBINATIONS - Auto-elevate to CRITICAL
dangerous_combos = [
("stalking language", "control"),
("veiled threats", "stalking language"),
("stalking language", "false concern"),
("veiled threats", "control")
]
has_dangerous_combo = any(
all(pattern in detected_patterns for pattern in combo)
for combo in dangerous_combos
)
# FORCE RISK ELEVATION for dangerous patterns
if has_dangerous_combo:
return "Critical"
elif has_critical and abuse_score >= 30: # Lower threshold for critical patterns
return "High"
elif has_critical:
return "Moderate"
elif abuse_score >= 70:
return "High"
elif abuse_score >= 50:
return "Moderate"
else:
return base_risk
def get_emotion_profile(text):
"""Get emotion profile from text with all scores"""
try:
emotions = emotion_pipeline(text)
if isinstance(emotions, list) and isinstance(emotions[0], list):
# Extract all scores from the first prediction
emotion_scores = emotions[0]
# Convert to dictionary with lowercase emotion names
return {e['label'].lower(): round(e['score'], 3) for e in emotion_scores}
return {}
except Exception as e:
logger.error(f"Error in get_emotion_profile: {e}")
return {
"sadness": 0.0,
"joy": 0.0,
"neutral": 0.0,
"disgust": 0.0,
"anger": 0.0,
"fear": 0.0
}
# FIXED FUNCTION - Added missing "d" and cleaned up structure
def get_emotional_tone_tag(text, sentiment, patterns, abuse_score):
"""Get emotional tone tag based on emotions and patterns"""
emotions = get_emotion_profile(text)
sadness = emotions.get("sadness", 0)
joy = emotions.get("joy", 0)
neutral = emotions.get("neutral", 0)
disgust = emotions.get("disgust", 0)
anger = emotions.get("anger", 0)
fear = emotions.get("fear", 0)
text_lower = text.lower()
# 1. Direct Threat Detection
threat_indicators = [
"if you", "i'll make", "don't forget", "remember", "regret",
"i control", "i'll take", "you'll lose", "make sure",
"never see", "won't let"
]
if (
any(indicator in text_lower for indicator in threat_indicators) and
any(p in patterns for p in ["control", "insults"]) and
(anger > 0.2 or disgust > 0.2 or abuse_score > 70)
):
return "direct threat"
# 2. Obsessive Fixation (for stalking language)
obsessive_indicators = [
"stop at nothing", "most desired", "forever", "always will",
"belong to me", "you're mine", "never let you go", "can't live without"
]
if (
any(indicator in text_lower for indicator in obsessive_indicators) and
"stalking language" in patterns and
(joy > 0.3 or sadness > 0.4 or fear > 0.2)
):
return "obsessive fixation"
# 3. Menacing Calm (for veiled threats)
veiled_threat_indicators = [
"some people might", "accidents happen", "be careful",
"wouldn't want", "things happen", "unfortunate"
]
if (
any(indicator in text_lower for indicator in veiled_threat_indicators) and
"veiled threats" in patterns and
neutral > 0.4 and anger < 0.2
):
return "menacing calm"
# 4. Predatory Concern (for false concern)
concern_indicators = [
"worried about", "concerned about", "for your own good",
"someone needs to", "protect you", "take care of you"
]
if (
any(indicator in text_lower for indicator in concern_indicators) and
"false concern" in patterns and
(joy > 0.2 or neutral > 0.3) and sentiment == "undermining"
):
return "predatory concern"
# 5. Victim Cosplay (for false equivalence/DARVO)
victim_indicators = [
"i'm the victim", "you're abusing me", "i'm being hurt",
"you're attacking me", "i'm innocent", "you're the problem"
]
if (
any(indicator in text_lower for indicator in victim_indicators) and
"false equivalence" in patterns and
sadness > 0.4 and anger > 0.2
):
return "victim cosplay"
# 6. Manipulative Hope (for future faking)
future_indicators = [
"i'll change", "we'll be", "i promise", "things will be different",
"next time", "from now on", "i'll never", "we'll have"
]
if (
any(indicator in text_lower for indicator in future_indicators) and
"future faking" in patterns and
(joy > 0.3 or sadness > 0.3)
):
return "manipulative hope"
# 7. Surveillance Intimacy (for stalking with false intimacy)
surveillance_indicators = [
"i know you", "i saw you", "i watched", "i've been",
"your routine", "where you go", "what you do"
]
if (
any(indicator in text_lower for indicator in surveillance_indicators) and
"stalking language" in patterns and
joy > 0.2 and neutral > 0.2
):
return "surveillance intimacy"
# 8. Conditional Menace (for threats with conditions)
conditional_indicators = [
"if you", "unless you", "you better", "don't make me",
"you wouldn't want", "force me to"
]
if (
any(indicator in text_lower for indicator in conditional_indicators) and
any(p in patterns for p in ["veiled threats", "control"]) and
anger > 0.3 and neutral > 0.2
):
return "conditional menace"
# 9. False Vulnerability (manipulation disguised as weakness)
vulnerability_indicators = [
"i can't help", "i need you", "without you i", "you're all i have",
"i'm lost without", "i don't know what to do"
]
if (
any(indicator in text_lower for indicator in vulnerability_indicators) and
any(p in patterns for p in ["guilt tripping", "future faking", "false concern"]) and
sadness > 0.5 and sentiment == "undermining"
):
return "false vulnerability"
# 10. Entitled Rage (anger with entitlement)
entitlement_indicators = [
"you owe me", "after everything", "how dare you", "you should",
"i deserve", "you have no right"
]
if (
any(indicator in text_lower for indicator in entitlement_indicators) and
anger > 0.5 and
any(p in patterns for p in ["control", "insults", "blame shifting"])
):
return "entitled rage"
# 11. Calculated Coldness (deliberate emotional detachment)
cold_indicators = [
"i don't care", "whatever", "your choice", "suit yourself",
"fine by me", "your loss"
]
calculated_patterns = ["dismissiveness", "obscure language", "control"]
if (
any(indicator in text_lower for indicator in cold_indicators) and
any(p in patterns for p in calculated_patterns) and
neutral > 0.6 and all(e < 0.2 for e in [anger, sadness, joy])
):
return "calculated coldness"
# 12. Predictive Punishment
future_consequences = [
"will end up", "you'll be", "you will be", "going to be",
"will become", "will find yourself", "will realize",
"you'll regret", "you'll see", "will learn", "truly will",
"end up alone", "end up miserable"
]
dismissive_endings = [
"i'm out", "i'm done", "whatever", "good luck",
"your choice", "your problem", "regardless",
"keep", "keep on"
]
if (
(any(phrase in text_lower for phrase in future_consequences) or
any(end in text_lower for end in dismissive_endings)) and
any(p in ["dismissiveness", "control"] for p in patterns) and
(disgust > 0.2 or neutral > 0.3 or anger > 0.2)
):
return "predictive punishment"
# 13. Performative Regret
if (
sadness > 0.3 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery"]) and
(sentiment == "undermining" or abuse_score > 40)
):
return "performative regret"
# 14. Coercive Warmth
if (
(joy > 0.2 or sadness > 0.3) and
any(p in patterns for p in ["control", "gaslighting"]) and
sentiment == "undermining"
):
return "coercive warmth"
# 15. Cold Invalidation
if (
(neutral + disgust) > 0.4 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
sentiment == "undermining"
):
return "cold invalidation"
# 16. Genuine Vulnerability
if (
(sadness + fear) > 0.4 and
sentiment == "supportive" and
all(p in ["recovery"] for p in patterns)
):
return "genuine vulnerability"
# 17. Emotional Threat
if (
(anger + disgust) > 0.4 and
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
sentiment == "undermining"
):
return "emotional threat"
# 18. Weaponized Sadness
if (
sadness > 0.5 and
any(p in patterns for p in ["guilt tripping", "projection"]) and
sentiment == "undermining"
):
return "weaponized sadness"
# 19. Contradictory Gaslight
if (
(joy + anger + sadness) > 0.4 and
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
sentiment == "undermining"
):
return "contradictory gaslight"
# 20. Forced Accountability Flip
if (
(anger + disgust) > 0.4 and
any(p in patterns for p in ["blame shifting", "projection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# Emotional Instability Fallback
if (
(anger + sadness + disgust) > 0.5 and
sentiment == "undermining"
):
return "emotional instability"
return "neutral"
@spaces.GPU
def predict_darvo_score(text):
"""Predict DARVO score for given text"""
try:
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
logits = darvo_model(**inputs).logits
return round(sigmoid(logits.cpu()).item(), 4)
except Exception as e:
logger.error(f"Error in DARVO prediction: {e}")
return 0.0
def detect_weapon_language(text):
"""Detect weapon-related language in text"""
weapon_keywords = ["knife", "gun", "bomb", "weapon", "kill", "stab"]
t = text.lower()
return any(w in t for w in weapon_keywords)
def get_risk_stage(patterns, sentiment):
"""Determine risk stage based on patterns and sentiment"""
try:
if "insults" in patterns:
return 2
elif "recovery" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
except Exception as e:
logger.error(f"Error determining risk stage: {e}")
return 1
def detect_threat_pattern(text, patterns):
"""Detect if a message contains threat patterns"""
# Threat indicators in text
threat_words = [
"regret", "sorry", "pay", "hurt", "suffer", "destroy", "ruin",
"expose", "tell everyone", "never see", "take away", "lose",
"control", "make sure", "won't let", "force", "warn", "never",
"punish", "teach you", "learn", "show you", "remember",
"if you", "don't forget", "i control", "i'll make sure", # Added these specific phrases
"bank account", "phone", "money", "access" # Added financial control indicators
]
# Check for conditional threats (if/then structures)
text_lower = text.lower()
conditional_threat = (
"if" in text_lower and
any(word in text_lower for word in ["regret", "make sure", "control"])
)
has_threat_words = any(word in text_lower for word in threat_words)
# Check for threat patterns
threat_patterns = {"control", "gaslighting", "blame shifting", "insults"}
has_threat_patterns = any(p in threat_patterns for p in patterns)
return has_threat_words or has_threat_patterns or conditional_threat
def detect_compound_threat(text, patterns):
"""Detect compound threats in a single message"""
try:
# Rule A: Single Message Multiple Patterns
high_risk_patterns = {"control", "gaslighting", "blame shifting", "insults"}
high_risk_count = sum(1 for p in patterns if p in high_risk_patterns)
has_threat = detect_threat_pattern(text, patterns)
# Special case for control + threats
has_control = "control" in patterns
has_conditional_threat = "if" in text.lower() and any(word in text.lower()
for word in ["regret", "make sure", "control"])
# Single message compound threat
if (has_threat and high_risk_count >= 2) or (has_control and has_conditional_threat):
return True, "single_message"
return False, None
except Exception as e:
logger.error(f"Error in compound threat detection: {e}")
return False, None
def analyze_message_batch_threats(messages, results):
"""Analyze multiple messages for compound threats"""
threat_messages = []
support_messages = []
for i, (msg, (result, _)) in enumerate(zip(messages, results)):
if not msg.strip(): # Skip empty messages
continue
patterns = result[1] # Get detected patterns
# Check for threat in this message
if detect_threat_pattern(msg, patterns):
threat_messages.append(i)
# Check for supporting patterns
if any(p in {"control", "gaslighting", "blame shifting"} for p in patterns):
support_messages.append(i)
# Rule B: Multi-Message Accumulation
if len(threat_messages) >= 2:
return True, "multiple_threats"
elif len(threat_messages) == 1 and len(support_messages) >= 2:
return True, "threat_with_support"
return False, None
@spaces.GPU
def compute_abuse_score(matched_scores, sentiment):
"""Compute abuse score from matched patterns and sentiment"""
try:
if not matched_scores:
logger.debug("No matched scores, returning 0")
return 0.0
# Calculate weighted score
total_weight = sum(weight for _, _, weight in matched_scores)
if total_weight == 0:
logger.debug("Total weight is 0, returning 0")
return 0.0
# Get highest pattern scores
pattern_scores = [(label, score) for label, score, _ in matched_scores]
sorted_scores = sorted(pattern_scores, key=lambda x: x[1], reverse=True)
logger.debug(f"Sorted pattern scores: {sorted_scores}")
# Base score calculation
weighted_sum = sum(score * weight for _, score, weight in matched_scores)
base_score = (weighted_sum / total_weight) * 100
logger.debug(f"Initial base score: {base_score:.1f}")
# Cap maximum score based on pattern severity
max_score = 85.0 # Set maximum possible score
if any(label in {'control', 'gaslighting'} for label, _, _ in matched_scores):
max_score = 90.0
logger.debug(f"Increased max score to {max_score} due to high severity patterns")
# Apply diminishing returns for multiple patterns
if len(matched_scores) > 1:
multiplier = 1 + (0.1 * (len(matched_scores) - 1))
base_score *= multiplier
logger.debug(f"Applied multiplier {multiplier:.2f} for {len(matched_scores)} patterns")
# Apply sentiment modifier
if sentiment == "supportive":
base_score *= 0.85
logger.debug("Applied 15% reduction for supportive sentiment")
final_score = min(round(base_score, 1), max_score)
logger.debug(f"Final abuse score: {final_score}")
return final_score
except Exception as e:
logger.error(f"Error computing abuse score: {e}")
return 0.0
def detect_explicit_abuse(text):
"""Improved explicit abuse detection with word boundary checking"""
import re
explicit_abuse_words = ['fuck', 'bitch', 'shit', 'dick'] # Removed 'ass'
# Add more specific patterns for actual abusive uses of 'ass'
abusive_ass_patterns = [
r'\bass\b(?!\s*glass)', # 'ass' not followed by 'glass'
r'\bdumb\s*ass\b',
r'\bkiss\s*my\s*ass\b',
r'\bget\s*your\s*ass\b'
]
text_lower = text.lower()
# Check basic explicit words
for word in explicit_abuse_words:
if re.search(r'\b' + word + r'\b', text_lower):
return True
# Check specific abusive 'ass' patterns
for pattern in abusive_ass_patterns:
if re.search(pattern, text_lower):
return True
return False
@spaces.GPU
def analyze_single_message(text, thresholds):
"""Analyze a single message for abuse patterns"""
logger.debug("\n=== DEBUG START ===")
logger.debug(f"Input text: {text}")
try:
if not text.strip():
logger.debug("Empty text, returning zeros")
return 0.0, [], [], {"label": "none"}, 1, 0.0, None
# EARLY SUPPORTIVE MESSAGE CHECK
innocent_indicators = [
'broken', 'not working', 'cracked', 'glass', 'screen', 'phone',
'device', 'battery', 'charger', 'wifi', 'internet', 'computer',
'sorry', 'apologize', 'my fault', 'mistake'
]
# If message contains innocent indicators and is short/simple
if (any(indicator in text.lower() for indicator in innocent_indicators) and
len(text.split()) < 20 and
not any(threat in text.lower() for threat in ['kill', 'hurt', 'destroy', 'hate'])):
# Run quick sentiment check
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()}
with torch.no_grad():
sent_logits = sentiment_model(**sent_inputs).logits[0]
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
# If sentiment is strongly supportive, return early
if sent_probs[0] > 0.8: # 80% supportive
logger.debug("Early return: Message appears to be innocent/supportive")
return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral"
# Check for explicit abuse (moved AFTER early return check)
explicit_abuse = detect_explicit_abuse(text)
logger.debug(f"Explicit abuse detected: {explicit_abuse}")
# Abuse model inference
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
raw_scores = torch.sigmoid(outputs.logits.squeeze(0)).cpu().numpy()
# Log raw model outputs
logger.debug("\nRaw model scores:")
for label, score in zip(LABELS, raw_scores):
logger.debug(f"{label}: {score:.3f}")
# Get predictions and sort them
predictions = list(zip(LABELS, raw_scores))
sorted_predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
logger.debug("\nTop 3 predictions:")
for label, score in sorted_predictions[:3]:
logger.debug(f"{label}: {score:.3f}")
# Apply thresholds
threshold_labels = []
if explicit_abuse:
threshold_labels.append("insults")
logger.debug("\nForced inclusion of 'insults' due to explicit abuse")
for label, score in sorted_predictions:
base_threshold = thresholds.get(label, 0.25)
if explicit_abuse:
base_threshold *= 0.5
if score > base_threshold:
if label not in threshold_labels:
threshold_labels.append(label)
logger.debug(f"\nLabels that passed thresholds: {threshold_labels}")
# Calculate matched scores
matched_scores = []
for label in threshold_labels:
score = raw_scores[LABELS.index(label)]
weight = PATTERN_WEIGHTS.get(label, 1.0)
if explicit_abuse and label == "insults":
weight *= 1.5
matched_scores.append((label, score, weight))
# Get sentiment
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()}
with torch.no_grad():
sent_logits = sentiment_model(**sent_inputs).logits[0]
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
# Add detailed logging
logger.debug("\nπ SENTIMENT ANALYSIS DETAILS")
logger.debug(f"Raw logits: {sent_logits}")
logger.debug(f"Probabilities: supportive={sent_probs[0]:.3f}, undermining={sent_probs[1]:.3f}")
# Make sure we're using the correct index mapping
sentiment = SENTIMENT_LABELS[int(np.argmax(sent_probs))]
logger.debug(f"Selected sentiment: {sentiment}")
enhanced_patterns = detect_enhanced_threats(text, threshold_labels)
for pattern in enhanced_patterns:
if pattern not in threshold_labels:
threshold_labels.append(pattern)
# Add to matched_scores with high confidence
weight = PATTERN_WEIGHTS.get(pattern, 1.0)
matched_scores.append((pattern, 0.85, weight))
# Calculate abuse score
abuse_score = compute_abuse_score(matched_scores, sentiment)
if explicit_abuse:
abuse_score = max(abuse_score, 70.0)
# Apply sentiment-based score capping BEFORE compound threat check
if sentiment == "supportive" and not explicit_abuse:
# For supportive messages, cap the abuse score much lower
abuse_score = min(abuse_score, 30.0)
logger.debug(f"Capped abuse score to {abuse_score} due to supportive sentiment")
# Check for compound threats
compound_threat_flag, threat_type = detect_compound_threat(text, threshold_labels)
# Apply compound threat override only for non-supportive messages
if compound_threat_flag and sentiment != "supportive":
logger.debug(f"β οΈ Compound threat detected in message: {threat_type}")
abuse_score = max(abuse_score, 85.0)
# Get DARVO score
darvo_score = predict_darvo_score(text)
# Get tone using emotion-based approach
tone_tag = get_emotional_tone_tag(text, sentiment, threshold_labels, abuse_score)
# Log tone usage
log_emotional_tone_usage(tone_tag, threshold_labels)
# Check for the specific combination (final safety check)
highest_pattern = max(matched_scores, key=lambda x: x[1])[0] if matched_scores else None
if sentiment == "supportive" and tone_tag == "neutral" and highest_pattern == "obscure language":
logger.debug("Message classified as likely non-abusive (supportive, neutral, and obscure language). Returning low risk.")
return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral"
# Set stage
stage = 2 if explicit_abuse or abuse_score > 70 else 1
logger.debug("=== DEBUG END ===\n")
return abuse_score, threshold_labels, matched_scores, {"label": sentiment}, stage, darvo_score, tone_tag
except Exception as e:
logger.error(f"Error in analyze_single_message: {e}")
return 0.0, [], [], {"label": "error"}, 1, 0.0, None
def generate_abuse_score_chart(dates, scores, patterns):
"""Generate a timeline chart of abuse scores"""
try:
plt.figure(figsize=(10, 6))
plt.clf()
# Create new figure
fig, ax = plt.subplots(figsize=(10, 6))
# Plot points and lines
x = range(len(scores))
plt.plot(x, scores, 'bo-', linewidth=2, markersize=8)
# Add labels for each point with highest scoring pattern
for i, (score, pattern) in enumerate(zip(scores, patterns)):
# Get the pattern and its score
plt.annotate(
f'{pattern}\n{score:.0f}%',
(i, score),
textcoords="offset points",
xytext=(0, 10),
ha='center',
bbox=dict(
boxstyle='round,pad=0.5',
fc='white',
ec='gray',
alpha=0.8
)
)
# Customize the plot
plt.ylim(-5, 105)
plt.grid(True, linestyle='--', alpha=0.7)
plt.title('Abuse Pattern Timeline', pad=20, fontsize=12)
plt.ylabel('Abuse Score %')
# X-axis labels
plt.xticks(x, dates, rotation=45)
# Risk level bands with better colors
plt.axhspan(0, 50, color='#90EE90', alpha=0.2) # light green - Low Risk
plt.axhspan(50, 70, color='#FFD700', alpha=0.2) # gold - Moderate Risk
plt.axhspan(70, 85, color='#FFA500', alpha=0.2) # orange - High Risk
plt.axhspan(85, 100, color='#FF6B6B', alpha=0.2) # light red - Critical Risk
# Add risk level labels
plt.text(-0.2, 25, 'Low Risk', rotation=90, va='center')
plt.text(-0.2, 60, 'Moderate Risk', rotation=90, va='center')
plt.text(-0.2, 77.5, 'High Risk', rotation=90, va='center')
plt.text(-0.2, 92.5, 'Critical Risk', rotation=90, va='center')
# Adjust layout
plt.tight_layout()
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close('all') # Close all figures to prevent memory leaks
return Image.open(buf)
except Exception as e:
logger.error(f"Error generating abuse score chart: {e}")
return None
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
"""Analyze multiple messages and checklist responses"""
logger.debug("\nπ STARTING NEW ANALYSIS")
logger.debug("=" * 50)
# Define severity categories at the start
high = {'control'}
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults',
'contradictory statements', 'guilt tripping'}
low = {'blame shifting', 'projection', 'recovery'}
try:
# Process checklist responses
logger.debug("\nπ CHECKLIST PROCESSING")
logger.debug("=" * 50)
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
logger.debug("Checklist Status:")
logger.debug(f" β’ None Selected Box: {'β' if none_selected_checked else 'β'}")
logger.debug(f" β’ Has Responses: {'β' if responses_checked else 'β'}")
logger.debug(f" β’ Final Status: {'None Selected' if none_selected else 'Has Selections'}")
if none_selected:
escalation_score = 0
escalation_note = "Checklist completed: no danger items reported."
escalation_completed = True
logger.debug("\nβ Checklist: No items selected")
elif responses_checked:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
escalation_note = "Checklist completed."
escalation_completed = True
logger.debug(f"\nπ Checklist Score: {escalation_score}")
# Log checked items
logger.debug("\nβ οΈ Selected Risk Factors:")
for (q, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]):
if a:
logger.debug(f" β’ [{w} points] {q}")
else:
escalation_score = None
escalation_note = "Checklist not completed."
escalation_completed = False
logger.debug("\nβ Checklist: Not completed")
# Process messages
logger.debug("\nπ MESSAGE PROCESSING")
logger.debug("=" * 50)
messages = [msg1, msg2, msg3]
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
logger.debug(f"Active Messages: {len(active)} of 3")
if not active:
logger.debug("β Error: No messages provided")
return "Please enter at least one message.", None
# Detect threats
logger.debug("\nπ¨ THREAT DETECTION")
logger.debug("=" * 50)
def normalize(text):
import unicodedata
text = text.lower().strip()
text = unicodedata.normalize("NFKD", text)
text = text.replace("'", "'")
return re.sub(r"[^a-z0-9 ]", "", text)
def detect_threat_motifs(message, motif_list):
norm_msg = normalize(message)
return [motif for motif in motif_list if normalize(motif) in norm_msg]
# Analyze threats and patterns
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
flat_threats = [t for sublist in immediate_threats for t in sublist]
threat_risk = "Yes" if flat_threats else "No"
# Analyze each message
logger.debug("\nπ INDIVIDUAL MESSAGE ANALYSIS")
logger.debug("=" * 50)
results = []
for m, d in active:
logger.debug(f"\nπ ANALYZING {d}")
logger.debug("-" * 40) # Separator for each message
result = analyze_single_message(m, THRESHOLDS.copy())
# Check for non-abusive classification and skip further analysis
if result[0] == 0.0 and result[1] == [] and result[3] == {"label": "supportive"} and result[4] == 1 and result[5] == 0.0 and result[6] == "neutral":
logger.debug(f"β {d} classified as non-abusive, skipping further analysis.")
continue # Skip to the next message
results.append((result, d))
# Unpack results for cleaner logging
abuse_score, patterns, matched_scores, sentiment, stage, darvo_score, tone = result
# Log core metrics
logger.debug("\nπ CORE METRICS")
logger.debug(f" β’ Abuse Score: {abuse_score:.1f}%")
logger.debug(f" β’ DARVO Score: {darvo_score:.3f}")
logger.debug(f" β’ Risk Stage: {stage}")
logger.debug(f" β’ Sentiment: {sentiment['label']}")
logger.debug(f" β’ Tone: {tone}")
# Log detected patterns with scores
if patterns:
logger.debug("\nπ― DETECTED PATTERNS")
for label, score, weight in matched_scores:
severity = "βHIGH" if label in high else "β οΈ MODERATE" if label in moderate else "π LOW"
logger.debug(f" β’ {severity} | {label}: {score:.3f} (weight: {weight})")
else:
logger.debug("\nβ No abuse patterns detected")
# Extract scores and metadata
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags = [r[0][6] for r in results]
dates_used = [r[1] for r in results]
# Pattern Analysis Summary
logger.debug("\nπ PATTERN ANALYSIS SUMMARY")
logger.debug("=" * 50)
predicted_labels = [label for r in results for label in r[0][1]]
if predicted_labels:
logger.debug("Detected Patterns Across All Messages:")
pattern_counts = Counter(predicted_labels)
# Log high severity patterns first
high_patterns = [p for p in pattern_counts if p in high]
if high_patterns:
logger.debug("\nβ HIGH SEVERITY PATTERNS:")
for p in high_patterns:
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})")
# Then moderate
moderate_patterns = [p for p in pattern_counts if p in moderate]
if moderate_patterns:
logger.debug("\nβ οΈ MODERATE SEVERITY PATTERNS:")
for p in moderate_patterns:
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})")
# Then low
low_patterns = [p for p in pattern_counts if p in low]
if low_patterns:
logger.debug("\nπ LOW SEVERITY PATTERNS:")
for p in low_patterns:
logger.debug(f" β’ {p} (Γ{pattern_counts[p]})")
else:
logger.debug("β No patterns detected across messages")
# Pattern Severity Analysis
logger.debug("\nβοΈ SEVERITY ANALYSIS")
logger.debug("=" * 50)
counts = {'high': 0, 'moderate': 0, 'low': 0}
for label in predicted_labels:
if label in high:
counts['high'] += 1
elif label in moderate:
counts['moderate'] += 1
elif label in low:
counts['low'] += 1
logger.debug("Pattern Distribution:")
if counts['high'] > 0:
logger.debug(f" β High Severity: {counts['high']}")
if counts['moderate'] > 0:
logger.debug(f" β οΈ Moderate Severity: {counts['moderate']}")
if counts['low'] > 0:
logger.debug(f" π Low Severity: {counts['low']}")
total_patterns = sum(counts.values())
if total_patterns > 0:
logger.debug(f"\nSeverity Percentages:")
logger.debug(f" β’ High: {(counts['high']/total_patterns)*100:.1f}%")
logger.debug(f" β’ Moderate: {(counts['moderate']/total_patterns)*100:.1f}%")
logger.debug(f" β’ Low: {(counts['low']/total_patterns)*100:.1f}%")
# Risk Assessment
logger.debug("\nπ― RISK ASSESSMENT")
logger.debug("=" * 50)
if counts['high'] >= 2 and counts['moderate'] >= 2:
pattern_escalation_risk = "Critical"
logger.debug("ββ CRITICAL RISK")
logger.debug(" β’ Multiple high and moderate patterns detected")
logger.debug(f" β’ High patterns: {counts['high']}")
logger.debug(f" β’ Moderate patterns: {counts['moderate']}")
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or \
(counts['moderate'] >= 3) or \
(counts['high'] >= 1 and counts['moderate'] >= 2):
pattern_escalation_risk = "High"
logger.debug("β HIGH RISK")
logger.debug(" β’ Significant pattern combination detected")
logger.debug(f" β’ High patterns: {counts['high']}")
logger.debug(f" β’ Moderate patterns: {counts['moderate']}")
elif (counts['moderate'] == 2) or \
(counts['high'] == 1 and counts['moderate'] == 1) or \
(counts['moderate'] == 1 and counts['low'] >= 2) or \
(counts['high'] == 1 and sum(counts.values()) == 1):
pattern_escalation_risk = "Moderate"
logger.debug("β οΈ MODERATE RISK")
logger.debug(" β’ Concerning pattern combination detected")
logger.debug(f" β’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}")
else:
pattern_escalation_risk = "Low"
logger.debug("π LOW RISK")
logger.debug(" β’ Limited pattern severity detected")
logger.debug(f" β’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}")
# Checklist Risk Assessment
logger.debug("\nπ CHECKLIST RISK ASSESSMENT")
logger.debug("=" * 50)
checklist_escalation_risk = "Unknown" if escalation_score is None else (
"Critical" if escalation_score >= 20 else
"Moderate" if escalation_score >= 10 else
"Low"
)
if escalation_score is not None:
logger.debug(f"Score: {escalation_score}/29")
logger.debug(f"Risk Level: {checklist_escalation_risk}")
if escalation_score >= 20:
logger.debug("ββ CRITICAL: Score indicates severe risk")
elif escalation_score >= 10:
logger.debug("β οΈ MODERATE: Score indicates concerning risk")
else:
logger.debug("π LOW: Score indicates limited risk")
else:
logger.debug("β Risk Level: Unknown (checklist not completed)")
# Escalation Analysis
logger.debug("\nπ ESCALATION ANALYSIS")
logger.debug("=" * 50)
escalation_bump = 0
for result, msg_id in results:
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
logger.debug(f"\nπ Message {msg_id} Risk Factors:")
factors = []
if darvo_score > 0.65:
escalation_bump += 3
factors.append(f"β² +3: High DARVO score ({darvo_score:.3f})")
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
factors.append(f"β² +2: Concerning tone ({tone_tag})")
if abuse_score > 80:
escalation_bump += 2
factors.append(f"β² +2: High abuse score ({abuse_score:.1f}%)")
if stage == 2:
escalation_bump += 3
factors.append("β² +3: Escalation stage")
if factors:
for factor in factors:
logger.debug(f" {factor}")
else:
logger.debug(" β No escalation factors")
logger.debug(f"\nπ Total Escalation Bump: +{escalation_bump}")
# Check for compound threats across messages
compound_threat_flag, threat_type = analyze_message_batch_threats(
[msg1, msg2, msg3], results
)
if compound_threat_flag:
logger.debug(f"β οΈ Compound threat detected across messages: {threat_type}")
pattern_escalation_risk = "Critical" # Override risk level
logger.debug("Risk level elevated to CRITICAL due to compound threats")
# Combined Risk Calculation
logger.debug("\nπ― FINAL RISK CALCULATION")
logger.debug("=" * 50)
def rank(label):
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
logger.debug("Risk Components:")
logger.debug(f" β’ Pattern Risk ({pattern_escalation_risk}): +{rank(pattern_escalation_risk)}")
logger.debug(f" β’ Checklist Risk ({checklist_escalation_risk}): +{rank(checklist_escalation_risk)}")
logger.debug(f" β’ Escalation Bump: +{escalation_bump}")
logger.debug(f" = Combined Score: {combined_score}")
escalation_risk = (
"Critical" if combined_score >= 6 else
"High" if combined_score >= 4 else
"Moderate" if combined_score >= 2 else
"Low"
)
logger.debug(f"\nβ οΈ Final Escalation Risk: {escalation_risk}")
# Generate Output Text
logger.debug("\nπ GENERATING OUTPUT")
logger.debug("=" * 50)
if escalation_score is None:
escalation_text = (
"π« **Escalation Potential: Unknown** (Checklist not completed)\n"
"β οΈ This section was not completed. Escalation potential is estimated using message data only.\n"
)
hybrid_score = 0
logger.debug("Generated output for incomplete checklist")
elif escalation_score == 0:
escalation_text = (
"β
**Escalation Checklist Completed:** No danger items reported.\n"
"π§ **Escalation potential estimated from detected message patterns only.**\n"
f"β’ Pattern Risk: {pattern_escalation_risk}\n"
f"β’ Checklist Risk: None reported\n"
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
hybrid_score = escalation_bump
logger.debug("Generated output for no-risk checklist")
else:
hybrid_score = escalation_score + escalation_bump
escalation_text = (
f"π **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
"π This score combines your safety checklist answers *and* detected high-risk behavior.\n"
f"β’ Pattern Risk: {pattern_escalation_risk}\n"
f"β’ Checklist Risk: {checklist_escalation_risk}\n"
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
logger.debug(f"Generated output with hybrid score: {hybrid_score}/29")
# Final Metrics
logger.debug("\nπ FINAL METRICS")
logger.debug("=" * 50)
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
logger.debug(f"Composite Abuse Score: {composite_abuse}%")
most_common_stage = max(set(stages), key=stages.count)
logger.debug(f"Most Common Stage: {most_common_stage}")
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
logger.debug(f"Average DARVO Score: {avg_darvo}")
final_risk_level = calculate_enhanced_risk_level(
composite_abuse,
predicted_labels,
escalation_risk,
avg_darvo
)
# Override escalation_risk with the enhanced version
escalation_risk = final_risk_level
# Generate Final Report
logger.debug("\nπ GENERATING FINAL REPORT")
logger.debug("=" * 50)
out = f"Abuse Intensity: {composite_abuse}%\n"
# Add detected patterns to output
if predicted_labels:
out += "π Detected Patterns:\n"
if high_patterns:
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in high_patterns)
out += f"β High Severity: {patterns_str}\n"
if moderate_patterns:
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in moderate_patterns)
out += f"β οΈ Moderate Severity: {patterns_str}\n"
if low_patterns:
patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in low_patterns)
out += f"π Low Severity: {patterns_str}\n"
out += "\n"
out += "π This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
# Risk Level Assessment
risk_level = final_risk_level
logger.debug(f"Final Risk Level: {risk_level}")
# Add Risk Description
risk_descriptions = {
"Critical": (
"π¨ **Risk Level: Critical**\n"
"Multiple severe abuse patterns detected. This situation shows signs of "
"dangerous escalation and immediate intervention may be needed."
),
"High": (
"β οΈ **Risk Level: High**\n"
"Strong abuse patterns detected. This situation shows concerning "
"signs of manipulation and control."
),
"Moderate": (
"β‘ **Risk Level: Moderate**\n"
"Concerning patterns detected. While not severe, these behaviors "
"indicate unhealthy relationship dynamics."
),
"Low": (
"π **Risk Level: Low**\n"
"Minor concerning patterns detected. While present, the detected "
"behaviors are subtle or infrequent."
)
}
out += risk_descriptions[risk_level]
out += f"\n\n{RISK_STAGE_LABELS[most_common_stage]}"
logger.debug("Added risk description and stage information")
# Add DARVO Analysis
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
out += f"\n\nπ **DARVO Score: {avg_darvo}** β This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
logger.debug(f"Added DARVO analysis ({level} level)")
# Add Emotional Tones
logger.debug("\nπ Adding Emotional Tones")
out += "\n\nπ **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
out += f"β’ Message {i+1}: *{tone or 'none'}*\n"
logger.debug(f"Message {i+1} tone: {tone}")
# Add Threats Section
logger.debug("\nβ οΈ Adding Threat Analysis")
if flat_threats:
out += "\n\nπ¨ **Immediate Danger Threats Detected:**\n"
for t in set(flat_threats):
out += f"β’ \"{t}\"\n"
out += "\nβ οΈ These phrases may indicate an imminent risk to physical safety."
logger.debug(f"Added {len(set(flat_threats))} unique threat warnings")
else:
out += "\n\nπ§© **Immediate Danger Threats:** None explicitly detected.\n"
out += "This does *not* rule out risk, but no direct threat phrases were matched."
logger.debug("No threats to add")
# Generate Timeline
logger.debug("\nπ Generating Timeline")
pattern_labels = []
for result, _ in results:
matched_scores = result[2] # Get the matched_scores from the result tuple
if matched_scores:
# Sort matched_scores by score and get the highest scoring pattern
highest_pattern = max(matched_scores, key=lambda x: x[1])
pattern_labels.append(highest_pattern[0]) # Add the pattern name
else:
pattern_labels.append("none")
logger.debug("Pattern labels for timeline:")
for i, (pattern, score) in enumerate(zip(pattern_labels, abuse_scores)):
logger.debug(f"Message {i+1}: {pattern} ({score:.1f}%)")
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
logger.debug("Timeline generated successfully")
# Add Escalation Text
out += "\n\n" + escalation_text
logger.debug("Added escalation text to output")
logger.debug("\nβ
ANALYSIS COMPLETE")
logger.debug("=" * 50)
# SAFETY PLANNING CHECK
# Check if safety planning should be offered
show_safety = should_show_safety_planning(
composite_abuse,
escalation_risk,
predicted_labels
)
safety_plan = ""
if show_safety:
# Generate safety plan
safety_plan = generate_simple_safety_plan(
composite_abuse,
escalation_risk,
predicted_labels
)
# Add notice to main results
out += "\n\n" + "π‘οΈ " + "="*48
out += "\n**SAFETY PLANNING AVAILABLE**"
out += "\n" + "="*50
out += "\n\nBased on your analysis results, we've generated a safety plan."
out += "\nCheck the 'Safety Plan' output below for personalized guidance."
return out, timeline_image, safety_plan
except Exception as e:
logger.error("\nβ ERROR IN ANALYSIS")
logger.error("=" * 50)
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
logger.error(f"Traceback:\n{traceback.format_exc()}")
return "An error occurred during analysis.", None, ""
def format_results_for_new_ui(analysis_output, timeline_image, safety_plan):
"""
Convert your existing analysis output into the format needed for the new UI
"""
try:
# Parse your existing text output to extract structured data
lines = analysis_output.split('\n')
# Extract abuse intensity
abuse_intensity = 0
for line in lines:
if line.startswith('Abuse Intensity:'):
abuse_intensity = int(re.findall(r'\d+', line)[0])
break
# Extract DARVO score
darvo_score = 0.0
for line in lines:
if 'DARVO Score:' in line:
# Extract number from line like "π **DARVO Score: 0.456**"
darvo_match = re.search(r'DARVO Score: ([\d.]+)', line)
if darvo_match:
darvo_score = float(darvo_match.group(1))
break
# Extract emotional tones
emotional_tones = []
in_tones_section = False
for line in lines:
if 'π **Emotional Tones Detected:**' in line:
in_tones_section = True
continue
elif in_tones_section and line.strip():
if line.startswith('β’ Message'):
# Extract tone from line like "β’ Message 1: *menacing calm*"
tone_match = re.search(r'\*([^*]+)\*', line)
if tone_match:
tone = tone_match.group(1)
emotional_tones.append(tone if tone != 'none' else 'neutral')
else:
emotional_tones.append('neutral')
elif not line.startswith('β’') and line.strip():
break
# Determine risk level based on your existing logic
if abuse_intensity >= 85:
risk_level = 'critical'
elif abuse_intensity >= 70:
risk_level = 'high'
elif abuse_intensity >= 50:
risk_level = 'moderate'
else:
risk_level = 'low'
# FIXED: Extract detected patterns properly
patterns = []
in_patterns_section = False
# Define valid pattern names to filter against
valid_patterns = {
"recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness",
"blame shifting", "nonabusive", "projection", "insults",
"contradictory statements", "obscure language",
"veiled threats", "stalking language", "false concern",
"false equivalence", "future faking"
}
for line in lines:
if 'π Detected Patterns:' in line:
in_patterns_section = True
continue
elif in_patterns_section and line.strip():
if line.startswith('β'):
severity = 'high'
elif line.startswith('β οΈ'):
severity = 'moderate'
elif line.startswith('π'):
severity = 'low'
else:
continue
# Extract pattern text after the severity indicator
if ':' in line:
pattern_text = line.split(':', 1)[1].strip()
else:
pattern_text = line[2:].strip() # Remove emoji and space
# Parse individual patterns from the text
# Handle format like "blame shifting (1x), projection (2x)"
pattern_parts = pattern_text.split(',')
for part in pattern_parts:
# Clean up the pattern name
pattern_name = part.strip()
# Remove count indicators like "(1x)", "(2x)", etc.
pattern_name = re.sub(r'\s*\(\d+x?\)', '', pattern_name)
# Remove any remaining special characters and clean
pattern_name = pattern_name.strip().lower()
# Only add if it's a valid pattern name
if pattern_name in valid_patterns:
patterns.append({
'name': pattern_name.replace('_', ' ').title(),
'severity': severity,
'description': get_pattern_description(pattern_name)
})
elif line.strip() and not line.startswith(('β', 'β οΈ', 'π')) and in_patterns_section:
# Exit patterns section when we hit a non-pattern line
break
# Generate personalized recommendations
recommendations = generate_personalized_recommendations(abuse_intensity, patterns, safety_plan)
return {
'riskLevel': risk_level,
'riskScore': abuse_intensity,
'primaryConcerns': patterns[:3], # Top 3 most important
'allPatterns': patterns,
'riskStage': extract_risk_stage(analysis_output),
'emotionalTones': emotional_tones,
'darvoScore': darvo_score,
'personalizedRecommendations': recommendations,
'hasSafetyPlan': bool(safety_plan),
'safetyPlan': safety_plan,
'rawAnalysis': analysis_output
}
except Exception as e:
logger.error(f"Error formatting results: {e}")
return {
'riskLevel': 'low',
'riskScore': 0,
'primaryConcerns': [],
'allPatterns': [],
'riskStage': 'unknown',
'emotionalTones': [],
'darvoScore': 0.0,
'personalizedRecommendations': ['Consider speaking with a counselor about your relationship concerns'],
'hasSafetyPlan': False,
'safetyPlan': '',
'rawAnalysis': analysis_output
}
def get_pattern_description(pattern_name):
"""Get human-readable descriptions for patterns"""
descriptions = {
'control': 'Attempts to manage your behavior, decisions, or daily activities',
'gaslighting': 'Making you question your memory, perception, or reality',
'dismissiveness': 'Minimizing or invalidating your feelings and experiences',
'guilt tripping': 'Making you feel guilty to influence your behavior',
'blame shifting': 'Placing responsibility for their actions onto you',
'projection': 'Accusing you of behaviors they themselves exhibit',
'insults': 'Name-calling or personal attacks intended to hurt',
'contradictory statements': 'Saying things that conflict with previous statements',
'obscure language': 'Using vague or confusing language to avoid accountability',
'veiled threats': 'Indirect threats or intimidating language',
'stalking language': 'Monitoring, tracking, or obsessive behaviors',
'false concern': 'Expressing fake worry to manipulate or control',
'false equivalence': 'Comparing incomparable situations to justify behavior',
'future faking': 'Making promises about future behavior that are unlikely to be kept'
}
return descriptions.get(pattern_name.lower(), 'Concerning communication pattern detected')
def generate_personalized_recommendations(abuse_score, patterns, safety_plan):
"""Generate recommendations based on specific findings"""
recommendations = []
# Base recommendations
if abuse_score >= 70:
recommendations.extend([
'Document these conversations with dates and times',
'Reach out to a trusted friend or family member about your concerns',
'Consider contacting the National Domestic Violence Hotline for guidance'
])
elif abuse_score >= 40:
recommendations.extend([
'Keep a private journal of concerning interactions',
'Talk to someone you trust about these communication patterns',
'Consider counseling to explore healthy relationship dynamics'
])
else:
recommendations.extend([
'Continue monitoring communication patterns that concern you',
'Consider discussing communication styles with your partner when you feel safe to do so'
])
# Pattern-specific recommendations
pattern_names = [p['name'].lower() for p in patterns]
if 'control' in pattern_names:
recommendations.append('Maintain your independence and decision-making autonomy')
if 'gaslighting' in pattern_names:
recommendations.append('Trust your memory and perceptions - consider keeping notes')
if any(p in pattern_names for p in ['stalking language', 'veiled threats']):
recommendations.append('Vary your routines and inform trusted people of your whereabouts')
if safety_plan:
recommendations.append('Review your personalized safety plan regularly')
return recommendations[:4] # Limit to 4 recommendations
def extract_risk_stage(analysis_output):
"""Extract risk stage from analysis output"""
if 'Tension-Building' in analysis_output:
return 'tension-building'
elif 'Escalation' in analysis_output:
return 'escalation'
elif 'Reconciliation' in analysis_output:
return 'reconciliation'
elif 'Honeymoon' in analysis_output:
return 'honeymoon'
else:
return 'unknown'
def analyze_composite_with_ui_format(msg1, msg2, msg3, *answers_and_none):
"""
Your existing analysis function, but returns formatted data for the new UI
"""
# Run your existing analysis
analysis_output, timeline_image, safety_plan = analyze_composite(msg1, msg2, msg3, *answers_and_none)
# Format for new UI
structured_results = format_results_for_new_ui(analysis_output, timeline_image, safety_plan)
# Return as JSON string for the new UI to parse
return json.dumps(structured_results), timeline_image, safety_plan
def create_mobile_friendly_interface():
"""Create a responsive interface that works well on both mobile and desktop with full functionality"""
css = """
/* Base responsive layout */
.gradio-container {
max-width: 100% !important;
padding: 12px !important;
}
/* Desktop: side-by-side columns */
@media (min-width: 1024px) {
.desktop-row {
display: flex !important;
gap: 20px !important;
}
.desktop-col-messages {
flex: 2 !important;
min-width: 400px !important;
}
.desktop-col-checklist {
flex: 1 !important;
min-width: 300px !important;
}
.desktop-col-results {
flex: 2 !important;
min-width: 400px !important;
}
.mobile-only {
display: none !important;
}
.mobile-expandable-btn {
display: none !important;
}
}
/* Mobile/Tablet: stack everything */
@media (max-width: 1023px) {
.gradio-row {
flex-direction: column !important;
}
.gradio-column {
width: 100% !important;
margin-bottom: 20px !important;
}
.desktop-only {
display: none !important;
}
/* Mobile expandable sections */
.mobile-expandable-content {
display: none;
}
.mobile-expandable-content.show {
display: block;
}
}
/* Button styling */
.gradio-button {
margin-bottom: 8px !important;
}
@media (max-width: 1023px) {
.gradio-button {
width: 100% !important;
padding: 16px !important;
font-size: 16px !important;
}
.mobile-expand-btn {
background: #f9fafb !important;
border: 1px solid #e5e7eb !important;
color: #374151 !important;
padding: 12px 16px !important;
margin: 8px 0 !important;
border-radius: 8px !important;
font-weight: 500 !important;
}
.mobile-expand-btn:hover {
background: #f3f4f6 !important;
}
}
/* Results styling */
.risk-low { border-left: 4px solid #10b981; background: #f0fdf4; }
.risk-moderate { border-left: 4px solid #f59e0b; background: #fffbeb; }
.risk-high { border-left: 4px solid #f97316; background: #fff7ed; }
.risk-critical { border-left: 4px solid #ef4444; background: #fef2f2; }
/* Clean group styling */
.gradio-group {
border: none !important;
background: none !important;
padding: 0 !important;
margin: 0 !important;
box-shadow: none !important;
}
/* Force readable text colors */
.gradio-html * {
color: #1f2937 !important;
}
.gradio-html p, .gradio-html div, .gradio-html span, .gradio-html li, .gradio-html ul, .gradio-html h1, .gradio-html h2, .gradio-html h3, .gradio-html h4 {
color: #1f2937 !important;
}
/* Form spacing */
.gradio-textbox {
margin-bottom: 12px !important;
}
.gradio-checkbox {
margin-bottom: 6px !important;
font-size: 14px !important;
}
/* Compact checklist */
.compact-checklist .gradio-checkbox {
margin-bottom: 4px !important;
}
/* Specific overrides for safety plan and analysis displays */
.gradio-html pre {
color: #1f2937 !important;
background: #f9fafb !important;
padding: 12px !important;
border-radius: 8px !important;
}
"""
with gr.Blocks(css=css, title="Relationship Pattern Analyzer") as demo:
gr.HTML("""
<div style="text-align: center; padding: 30px 20px;">
<h1 style="font-size: 2.5rem; font-weight: bold; color: #1f2937; margin-bottom: 16px;">
Relationship Pattern Analyzer
</h1>
<p style="font-size: 1.25rem; color: #6b7280; max-width: 600px; margin: 0 auto;">
Share messages that concern you, and we'll help you understand what patterns might be present.
</p>
</div>
""")
with gr.Tab("Analyze Messages"):
# Privacy notice
gr.HTML("""
<div style="background: #1e40af; border-radius: 12px; padding: 24px; margin-bottom: 24px; width: 100%; box-shadow: 0 4px 12px rgba(30, 64, 175, 0.3);">
<div style="display: flex; align-items: center; margin-bottom: 12px;">
<span style="font-size: 1.5rem; margin-right: 12px;">π‘οΈ</span>
<h3 style="color: white; margin: 0; font-size: 1.25rem; font-weight: 600;">Your Privacy Matters</h3>
</div>
<p style="color: #e0e7ff; margin: 0; font-size: 1rem; line-height: 1.5;">
Your messages are analyzed locally and are not stored or shared.
This tool is for educational purposes and not a substitute for professional counseling.
</p>
</div>
""")
# Desktop layout
with gr.Row(elem_classes=["desktop-row", "desktop-only"], equal_height=True):
# Messages column
with gr.Column(elem_classes=["desktop-col-messages"], scale=4, min_width=400):
gr.HTML("<h3 style='margin-bottom: 16px;'>Share Your Messages</h3>")
gr.HTML("""
<p style="color: #6b7280; margin-bottom: 20px;">
Enter up to three messages that made you feel uncomfortable, confused, or concerned.
For the most accurate analysis, include messages from recent emotionally intense conversations.
</p>
""")
msg1_desktop = gr.Textbox(
label="Message 1 *",
placeholder="Enter the message here...",
lines=4
)
msg2_desktop = gr.Textbox(
label="Message 2 (optional)",
placeholder="Enter the message here...",
lines=4
)
msg3_desktop = gr.Textbox(
label="Message 3 (optional)",
placeholder="Enter the message here...",
lines=4
)
# Checklist column
with gr.Column(elem_classes=["desktop-col-checklist"], scale=3, min_width=300):
gr.HTML("<h3 style='margin-bottom: 16px;'>Safety Checklist</h3>")
gr.HTML("""
<p style="color: #6b7280; margin-bottom: 20px; font-size: 14px;">
Optional but recommended. Check any that apply to your situation:
</p>
""")
checklist_items_desktop = []
with gr.Column(elem_classes=["compact-checklist"]):
for question, weight in ESCALATION_QUESTIONS:
checklist_items_desktop.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"]))
none_selected_desktop = gr.Checkbox(
label="None of the above apply to my situation",
elem_classes=["none-checkbox"]
)
analyze_btn_desktop = gr.Button(
"Analyze Messages",
variant="primary",
size="lg"
)
# Results column
with gr.Column(elem_classes=["desktop-col-results"], scale=5, min_width=400):
gr.HTML("<h3 style='margin-bottom: 16px;'>Analysis Results</h3>")
gr.HTML("""
<p style="color: #6b7280; margin-bottom: 20px; font-style: italic;">
Results will appear here after analysis...
</p>
""")
# Desktop results components
results_json_desktop = gr.JSON(visible=False)
risk_summary_desktop = gr.HTML(visible=False)
concerns_display_desktop = gr.HTML(visible=False)
additional_metrics_desktop = gr.HTML(visible=False)
recommendations_display_desktop = gr.HTML(visible=False)
with gr.Row(visible=False) as action_buttons_desktop:
safety_plan_btn_desktop = gr.Button("π‘οΈ Get Safety Plan", variant="secondary")
full_analysis_btn_desktop = gr.Button("π Show Full Analysis", variant="secondary")
download_btn_desktop = gr.Button("π Download Report", variant="secondary")
full_analysis_display_desktop = gr.HTML(visible=False)
timeline_chart_desktop = gr.Image(visible=False, label="Pattern Timeline")
download_file_desktop = gr.File(label="Download Report", visible=False)
# Mobile layout
with gr.Column(elem_classes=["mobile-only"]):
# Message input - always visible
gr.HTML("<h3>π Share Your Messages</h3>")
gr.HTML("""
<p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;">
Enter messages that made you uncomfortable or concerned:
</p>
""")
msg1_mobile = gr.Textbox(
label="Message 1 (required)",
placeholder="Enter the concerning message here...",
lines=3
)
# Button to show additional messages
show_more_msgs_btn = gr.Button(
"β Add More Messages (Optional)",
elem_classes=["mobile-expand-btn", "mobile-expandable-btn"],
variant="secondary"
)
# Additional messages (hidden by default)
with gr.Column(visible=False) as additional_messages_mobile:
msg2_mobile = gr.Textbox(
label="Message 2 (optional)",
placeholder="Enter another message...",
lines=3
)
msg3_mobile = gr.Textbox(
label="Message 3 (optional)",
placeholder="Enter a third message...",
lines=3
)
# Button to show safety checklist
show_checklist_btn = gr.Button(
"β οΈ Safety Checklist (Optional)",
elem_classes=["mobile-expand-btn", "mobile-expandable-btn"],
variant="secondary"
)
# Safety checklist (hidden by default)
with gr.Column(visible=False) as safety_checklist_mobile:
gr.HTML("""
<p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;">
Check any that apply to improve analysis accuracy:
</p>
""")
checklist_items_mobile = []
for question, weight in ESCALATION_QUESTIONS:
checklist_items_mobile.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"]))
none_selected_mobile = gr.Checkbox(
label="None of the above apply",
elem_classes=["none-checkbox"]
)
# Analysis button
analyze_btn_mobile = gr.Button(
"π Analyze Messages",
variant="primary",
size="lg"
)
# Mobile results components
results_json_mobile = gr.JSON(visible=False)
risk_summary_mobile = gr.HTML(visible=False)
concerns_display_mobile = gr.HTML(visible=False)
additional_metrics_mobile = gr.HTML(visible=False)
recommendations_display_mobile = gr.HTML(visible=False)
with gr.Row(visible=False) as action_buttons_mobile:
safety_plan_btn_mobile = gr.Button("π‘οΈ Safety Plan", variant="secondary")
full_analysis_btn_mobile = gr.Button("π Full Analysis", variant="secondary")
download_btn_mobile = gr.Button("π Download", variant="secondary")
full_analysis_display_mobile = gr.HTML(visible=False)
timeline_chart_mobile = gr.Image(visible=False, label="Pattern Timeline")
download_file_mobile = gr.File(label="Download Report", visible=False)
with gr.Tab("Safety Resources"):
gr.HTML("""
<div style="background: #dcfce7; border-radius: 12px; padding: 24px; margin-bottom: 20px;">
<h2 style="color: #166534; margin-bottom: 16px;">π‘οΈ Safety Planning</h2>
<p style="color: #166534;">
If you're concerned about your safety, here are immediate resources and steps you can take.
</p>
</div>
""")
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="risk-card" style="background: #fef2f2; border-left: 4px solid #ef4444;">
<h3 style="color: #991b1b;">π¨ Emergency Resources</h3>
<div style="margin: 16px 0;">
<p><strong>911</strong> - For immediate danger</p>
<p><strong>1-800-799-7233</strong> - National DV Hotline (24/7)</p>
<p><strong>Text START to 88788</strong> - Crisis Text Line</p>
<p><strong>988</strong> - National Suicide Prevention Lifeline</p>
</div>
</div>
""")
with gr.Column():
gr.HTML("""
<div class="risk-card" style="background: #f0fdf4; border-left: 4px solid #10b981;">
<h3 style="color: #065f46;">π Support Resources</h3>
<div style="margin: 16px 0;">
<p><strong>thehotline.org</strong> - Online chat support</p>
<p><strong>Local counseling services</strong> - Professional support</p>
<p><strong>Trusted friends/family</strong> - Personal support network</p>
<p><strong>Legal advocacy</strong> - Know your rights</p>
</div>
</div>
""")
safety_plan_display = gr.HTML()
# Mobile expandable button handlers
def toggle_additional_messages(current_visibility):
return gr.update(visible=not current_visibility)
def toggle_safety_checklist(current_visibility):
return gr.update(visible=not current_visibility)
show_more_msgs_btn.click(
toggle_additional_messages,
inputs=[additional_messages_mobile],
outputs=[additional_messages_mobile]
)
show_checklist_btn.click(
toggle_safety_checklist,
inputs=[safety_checklist_mobile],
outputs=[safety_checklist_mobile]
)
# Full analysis processing function
def process_analysis(*inputs):
"""Process the analysis and format for display - FULL FUNCTIONALITY"""
msgs = inputs[:3]
checklist_responses = inputs[3:]
# Run analysis
analysis_result, timeline_img, safety_plan = analyze_composite_with_ui_format(*inputs)
# Parse results
try:
results = json.loads(analysis_result)
except:
results = {'riskLevel': 'low', 'riskScore': 0, 'primaryConcerns': [], 'emotionalTones': [], 'darvoScore': 0, 'personalizedRecommendations': []}
# Format risk summary
risk_config = {
'low': {'color': '#10b981', 'bg': '#f0fdf4', 'icon': 'π’', 'label': 'Low Risk'},
'moderate': {'color': '#f59e0b', 'bg': '#fffbeb', 'icon': 'π‘', 'label': 'Moderate Concern'},
'high': {'color': '#f97316', 'bg': '#fff7ed', 'icon': 'π ', 'label': 'High Risk'},
'critical': {'color': '#ef4444', 'bg': '#fef2f2', 'icon': 'π΄', 'label': 'Critical Risk'}
}
config = risk_config.get(results['riskLevel'], risk_config['low'])
# Create pattern summary for display with explicit styling
pattern_summary = ""
if results.get('primaryConcerns'):
# Filter out the "escalation potential" concern when displaying in summary
actual_concerns = [concern for concern in results['primaryConcerns']
if 'escalation potential' not in concern['name'].lower()]
if actual_concerns:
pattern_names = [concern['name'] for concern in actual_concerns]
if len(pattern_names) == 1:
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> pattern detected</span>"
elif len(pattern_names) == 2:
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[1]}</strong> patterns detected</span>"
else:
pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{', '.join(pattern_names[:-1])}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[-1]}</strong> patterns detected</span>"
else:
# Only escalation potential was found (incomplete checklist)
pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>"
else:
pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>"
risk_html = f"""
<div style="background: {config['bg']}; border-left: 4px solid {config['color']}; border-radius: 12px; padding: 24px; margin-bottom: 20px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<div style="display: flex; align-items: center; margin-bottom: 16px;">
<span style="font-size: 2rem; margin-right: 12px;">{config['icon']}</span>
<div>
<h2 style="font-size: 1.5rem; font-weight: bold; color: #1f2937; margin: 0;">{config['label']}</h2>
<p style="color: #374151; margin: 0; font-weight: 500;">Based on the messages you shared</p>
</div>
</div>
<div style="background: rgba(0,0,0,0.05); border-radius: 8px; padding: 16px;">
<div style="color: #1f2937 !important; margin: 0 0 8px 0; font-size: 1rem;">
<span style="color: #1f2937 !important;">{pattern_summary}</span>
</div>
<p style="color: #374151 !important; margin: 0; font-weight: 600;">
Risk Score: {results['riskScore']}%
</p>
</div>
</div>
"""
# Format concerns
concerns_html = "<h3 style='margin-top: 24px;'>Key Concerns Found</h3>"
if results.get('primaryConcerns'):
for concern in results['primaryConcerns']:
severity_colors = {
'high': '#fee2e2',
'moderate': '#fef3c7',
'low': '#dbeafe'
}
bg_color = severity_colors.get(concern.get('severity', 'low'), '#f3f4f6')
concerns_html += f"""
<div style="background: {bg_color}; border-radius: 8px; padding: 16px; margin: 8px 0;">
<h4 style="margin: 0 0 8px 0; color: #1f2937;">{concern.get('name', 'Unknown Concern')}</h4>
<p style="margin: 0; color: #6b7280;">{concern.get('description', 'No description available')}</p>
</div>
"""
else:
concerns_html += "<p style='color: #6b7280; font-style: italic;'>No specific concerns identified in the messages.</p>"
# Additional Metrics Section
metrics_html = "<h3 style='margin-top: 24px;'>Additional Analysis</h3>"
# DARVO Score
darvo_score = results.get('darvoScore', 0)
if darvo_score > 0.25:
darvo_level = "High" if darvo_score >= 0.65 else "Moderate"
darvo_color = "#fee2e2" if darvo_score >= 0.65 else "#fef3c7"
metrics_html += f"""
<div style="background: {darvo_color}; border-radius: 8px; padding: 16px; margin: 8px 0;">
<h4 style="margin: 0 0 8px 0; color: #1f2937;">π DARVO Score: {darvo_score:.3f} ({darvo_level})</h4>
<p style="margin: 0; color: #6b7280;">
DARVO (Deny, Attack, Reverse Victim & Offender) indicates potential narrative manipulation where the speaker may be deflecting responsibility.
</p>
</div>
"""
# Emotional Tones
emotional_tones = results.get('emotionalTones', [])
if emotional_tones and any(tone != 'neutral' for tone in emotional_tones):
metrics_html += f"""
<div style="background: #f8fafc; border-radius: 8px; padding: 16px; margin: 8px 0;">
<h4 style="margin: 0 0 8px 0; color: #1f2937;">π Emotional Tones Detected</h4>
<div style="margin: 8px 0;">
"""
for i, tone in enumerate(emotional_tones):
if tone and tone != 'neutral':
metrics_html += f"""
<p style="margin: 4px 0; color: #6b7280;">β’ Message {i+1}: <em>{tone}</em></p>
"""
metrics_html += """
</div>
<p style="margin: 8px 0 0 0; color: #6b7280; font-size: 14px;">
Emotional tone analysis helps identify underlying manipulation tactics or concerning emotional patterns.
</p>
</div>
"""
# Format recommendations
rec_html = "<h3 style='margin-top: 24px;'>Personalized Recommendations</h3>"
recommendations = results.get('personalizedRecommendations', [])
for rec in recommendations:
rec_html += f"""
<div style="background: #f8fafc; border-left: 3px solid #3b82f6; border-radius: 8px; padding: 12px; margin: 8px 0;">
<p style="margin: 0; color: #374151;">β’ {rec}</p>
</div>
"""
return (
gr.update(value=analysis_result, visible=False), # results_json
gr.update(value=risk_html, visible=True), # risk_summary
gr.update(value=concerns_html, visible=True), # concerns_display
gr.update(value=metrics_html, visible=True), # additional_metrics
gr.update(value=rec_html, visible=True), # recommendations_display
gr.update(visible=True), # action_buttons
gr.update(visible=False), # full_analysis_display
gr.update(value=timeline_img, visible=True), # timeline_chart
gr.update(visible=False), # download_file
gr.update(value=safety_plan) # safety_plan_display
)
def show_full_analysis(results_json_str):
"""Show the full technical analysis"""
try:
if not results_json_str:
return gr.update(value="<p>No analysis data available. Please run the analysis first.</p>", visible=True)
# Handle both JSON string and dict inputs
if isinstance(results_json_str, str):
results = json.loads(results_json_str)
elif isinstance(results_json_str, dict):
results = results_json_str
else:
return gr.update(value="<p>Invalid data format. Please run the analysis again.</p>", visible=True)
# Create comprehensive full analysis display
full_html = f"""
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
<h3 style="color: #1f2937 !important;">π Complete Technical Analysis</h3>
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
<h4 style="color: #1f2937 !important;">π Risk Assessment Summary</h4>
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Level:</strong> {results.get('riskLevel', 'Unknown').title()}</p>
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Score:</strong> {results.get('riskScore', 'N/A')}%</p>
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Stage:</strong> {results.get('riskStage', 'Unknown').replace('-', ' ').title()}</p>
</div>
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
<h4 style="color: #1f2937 !important;">π Behavioral Analysis</h4>
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">DARVO Score:</strong> {results.get('darvoScore', 0):.3f}</p>
<p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Emotional Tones:</strong> {', '.join(results.get('emotionalTones', ['None detected']))}</p>
</div>
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
<h4 style="color: #1f2937 !important;">π Detected Patterns</h4>
"""
if results.get('allPatterns'):
for pattern in results['allPatterns']:
severity_badge = {
'high': 'π΄',
'moderate': 'π‘',
'low': 'π’'
}.get(pattern.get('severity', 'low'), 'βͺ')
full_html += f"""
<div style="margin: 8px 0; padding: 8px; background: white; border-radius: 4px;">
<p style="margin: 0; color: #1f2937 !important;"><strong style="color: #1f2937 !important;">{severity_badge} {pattern.get('name', 'Unknown')}</strong></p>
<p style="margin: 4px 0 0 0; font-size: 14px; color: #6b7280 !important;">{pattern.get('description', 'No description available')}</p>
</div>
"""
else:
full_html += "<p style='color: #1f2937 !important;'>No specific patterns detected.</p>"
full_html += """
</div>
<div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
<h4 style="color: #1f2937 !important;">π Complete Analysis Output</h4>
<div style="max-height: 400px; overflow-y: auto; background: white; padding: 12px; border-radius: 4px; font-family: monospace; font-size: 14px; white-space: pre-wrap; color: #1f2937 !important;">"""
full_html += results.get('rawAnalysis', 'No detailed analysis available')
full_html += """
</div>
</div>
</div>
"""
return gr.update(value=full_html, visible=True)
except Exception as e:
error_html = f"""
<div style="background: #fee2e2; border-radius: 8px; padding: 16px; margin-top: 20px;">
<h4>β Error Loading Analysis</h4>
<p>Unable to parse analysis results: {str(e)}</p>
<p>Please try running the analysis again.</p>
</div>
"""
return gr.update(value=error_html, visible=True)
def generate_report(results_json_str, timeline_img):
"""Generate a downloadable report with all analysis information"""
import tempfile
import os
from datetime import datetime
try:
if not results_json_str:
return None
# Handle both JSON string and dict inputs
if isinstance(results_json_str, str):
results = json.loads(results_json_str)
elif isinstance(results_json_str, dict):
results = results_json_str
else:
return None
current_date = datetime.now().strftime("%Y-%m-%d")
current_time = datetime.now().strftime("%I:%M %p")
# Create comprehensive report
report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT
Generated: {current_date} at {current_time}
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
EXECUTIVE SUMMARY
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Risk Level: {results.get('riskLevel', 'Unknown').upper()}
Risk Score: {results.get('riskScore', 'N/A')}%
Risk Stage: {results.get('riskStage', 'Unknown').replace('-', ' ').title()}
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
DETECTED PATTERNS
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ"""
# Add detected patterns
if results.get('allPatterns'):
for pattern in results['allPatterns']:
severity_symbol = {
'high': 'π΄ HIGH',
'moderate': 'π‘ MODERATE',
'low': 'π’ LOW'
}.get(pattern.get('severity', 'low'), 'βͺ UNKNOWN')
report += f"""
{severity_symbol} SEVERITY: {pattern.get('name', 'Unknown Pattern')}
Description: {pattern.get('description', 'No description available')}"""
else:
report += "\n\nNo specific patterns detected in the analysis."
# Add behavioral analysis
report += f"""
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
BEHAVIORAL ANALYSIS
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
DARVO Score: {results.get('darvoScore', 0):.3f}"""
darvo_score = results.get('darvoScore', 0)
if darvo_score > 0.65:
report += "\nDARVO Level: HIGH - Strong indication of narrative manipulation"
elif darvo_score > 0.25:
report += "\nDARVO Level: MODERATE - Some indication of narrative manipulation"
else:
report += "\nDARVO Level: LOW - Limited indication of narrative manipulation"
report += """\n
DARVO Definition: Deny, Attack, Reverse Victim & Offender - a manipulation
tactic where the perpetrator denies wrongdoing, attacks the victim, and
positions themselves as the victim.
Emotional Tone Analysis:"""
# Add emotional tones
emotional_tones = results.get('emotionalTones', [])
if emotional_tones:
for i, tone in enumerate(emotional_tones):
if tone and tone != 'neutral':
report += f"\nMessage {i+1}: {tone}"
if not any(tone != 'neutral' for tone in emotional_tones):
report += "\nNo concerning emotional tones detected."
else:
report += "\nNo emotional tone data available."
# Add recommendations
report += f"""
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
PERSONALIZED RECOMMENDATIONS
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ"""
recommendations = results.get('personalizedRecommendations', [])
for i, rec in enumerate(recommendations, 1):
report += f"\n{i}. {rec}"
# Add safety planning
safety_plan = results.get('safetyPlan', '')
if safety_plan:
report += f"""
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SAFETY PLANNING
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
{safety_plan}"""
# Add emergency resources
report += """
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
EMERGENCY RESOURCES
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π¨ IMMEDIATE EMERGENCY: Call 911
24/7 CRISIS SUPPORT:
β’ National Domestic Violence Hotline: 1-800-799-7233
β’ Crisis Text Line: Text START to 88788
β’ National Suicide Prevention Lifeline: 988
β’ Online Chat Support: thehotline.org
ADDITIONAL SUPPORT:
β’ Local counseling services
β’ Legal advocacy organizations
β’ Trusted friends and family
β’ Employee assistance programs (if available)
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
IMPORTANT DISCLAIMERS
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β’ This analysis is for educational purposes only
β’ It is not a substitute for professional counseling or legal advice
β’ Trust your instincts about your safety
β’ Consider sharing this report with a trusted counselor or advocate
β’ Your messages were analyzed locally and not stored or shared
Report Generated by: Relationship Pattern Analyzer
Analysis Date: {current_date}
Report Version: 1.0
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ"""
# Create temporary file
temp_file = tempfile.NamedTemporaryFile(
mode='w',
suffix='.txt',
prefix=f'relationship_analysis_report_{current_date.replace("-", "_")}_',
delete=False,
encoding='utf-8'
)
temp_file.write(report)
temp_file.close()
return temp_file.name
except Exception as e:
# Create error report
error_report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT - ERROR
Generated: {datetime.now().strftime("%Y-%m-%d at %I:%M %p")}
An error occurred while generating the full report: {str(e)}
Please try running the analysis again or contact support if the issue persists."""
temp_file = tempfile.NamedTemporaryFile(
mode='w',
suffix='.txt',
prefix='error_report_',
delete=False,
encoding='utf-8'
)
temp_file.write(error_report)
temp_file.close()
return temp_file.name
def show_safety_plan_content(safety_plan_content):
"""Display the personalized safety plan"""
if safety_plan_content:
safety_plan_html = f"""
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
<h3 style="color: #1f2937 !important;">π‘οΈ Your Personalized Safety Plan</h3>
<div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;">
<div style="white-space: pre-wrap; font-family: inherit; font-size: 14px; line-height: 1.5; color: #1f2937 !important;">{safety_plan_content}</div>
</div>
</div>
"""
return gr.update(value=safety_plan_html, visible=True)
else:
# Fallback to general safety information
general_safety = """
<div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
<h3 style="color: #1f2937 !important;">π‘οΈ Safety Planning</h3>
<div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;">
<h4 style="color: #1f2937 !important;">Immediate Safety Steps:</h4>
<ul style="color: #1f2937 !important;">
<li style="color: #1f2937 !important;">Trust your instincts - if something feels wrong, it probably is</li>
<li style="color: #1f2937 !important;">Document concerning incidents with dates and details</li>
<li style="color: #1f2937 !important;">Identify safe people you can reach out to</li>
<li style="color: #1f2937 !important;">Keep important documents and emergency contacts accessible</li>
<li style="color: #1f2937 !important;">Consider speaking with a counselor or trusted friend</li>
</ul>
<h4 style="color: #1f2937 !important;">Emergency Resources:</h4>
<ul style="color: #1f2937 !important;">
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">911</strong> - For immediate danger</li>
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">1-800-799-7233</strong> - National DV Hotline (24/7)</li>
<li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Text START to 88788</strong> - Crisis Text Line</li>
</ul>
</div>
</div>
"""
return gr.update(value=general_safety, visible=True)
# Connect desktop event handlers
analyze_btn_desktop.click(
process_analysis,
inputs=[msg1_desktop, msg2_desktop, msg3_desktop] + checklist_items_desktop + [none_selected_desktop],
outputs=[
results_json_desktop, risk_summary_desktop, concerns_display_desktop,
additional_metrics_desktop, recommendations_display_desktop, action_buttons_desktop,
full_analysis_display_desktop, timeline_chart_desktop, download_file_desktop, safety_plan_display
]
)
full_analysis_btn_desktop.click(
show_full_analysis,
inputs=[results_json_desktop],
outputs=[full_analysis_display_desktop]
)
download_btn_desktop.click(
generate_report,
inputs=[results_json_desktop, timeline_chart_desktop],
outputs=[download_file_desktop]
).then(
lambda: gr.update(visible=True),
outputs=[download_file_desktop]
)
safety_plan_btn_desktop.click(
show_safety_plan_content,
inputs=[safety_plan_display],
outputs=[full_analysis_display_desktop]
)
# Connect mobile event handlers
analyze_btn_mobile.click(
process_analysis,
inputs=[msg1_mobile, msg2_mobile, msg3_mobile] + checklist_items_mobile + [none_selected_mobile],
outputs=[
results_json_mobile, risk_summary_mobile, concerns_display_mobile,
additional_metrics_mobile, recommendations_display_mobile, action_buttons_mobile,
full_analysis_display_mobile, timeline_chart_mobile, download_file_mobile, safety_plan_display
]
)
full_analysis_btn_mobile.click(
show_full_analysis,
inputs=[results_json_mobile],
outputs=[full_analysis_display_mobile]
)
download_btn_mobile.click(
generate_report,
inputs=[results_json_mobile, timeline_chart_mobile],
outputs=[download_file_mobile]
).then(
lambda: gr.update(visible=True),
outputs=[download_file_mobile]
)
safety_plan_btn_mobile.click(
show_safety_plan_content,
inputs=[safety_plan_display],
outputs=[full_analysis_display_mobile]
)
return demo
if __name__ == "__main__":
try:
print("π± Creating interface...")
demo = create_mobile_friendly_interface()
print("β
Interface created successfully")
print("π Launching demo...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
print("π App launched!")
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
raise |