File size: 118,971 Bytes
e153ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e153ac6
 
 
 
 
 
 
 
 
 
3164573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e153ac6
3164573
 
e153ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164573
e153ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3164573
 
 
 
 
 
e153ac6
 
3164573
e153ac6
3164573
 
e153ac6
3164573
e153ac6
 
 
 
 
 
 
 
 
 
3164573
 
e153ac6
 
3164573
e153ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
import gradio as gr
import spaces
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline as hf_pipeline
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from torch.nn.functional import sigmoid
from collections import Counter
import logging
import traceback
import json


# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"Using device: {device}")

# Set up custom logging
class CustomFormatter(logging.Formatter):
    """Custom formatter with colors and better formatting"""
    grey = "\x1b[38;21m"
    blue = "\x1b[38;5;39m"
    yellow = "\x1b[38;5;226m"
    red = "\x1b[38;5;196m"
    bold_red = "\x1b[31;1m"
    reset = "\x1b[0m"

    def format(self, record):
        # Remove the logger name from the output
        if record.levelno == logging.DEBUG:
            return f"{self.blue}{record.getMessage()}{self.reset}"
        elif record.levelno == logging.INFO:
            return f"{self.grey}{record.getMessage()}{self.reset}"
        elif record.levelno == logging.WARNING:
            return f"{self.yellow}{record.getMessage()}{self.reset}"
        elif record.levelno == logging.ERROR:
            return f"{self.red}{record.getMessage()}{self.reset}"
        elif record.levelno == logging.CRITICAL:
            return f"{self.bold_red}{record.getMessage()}{self.reset}"
        return record.getMessage()

# Setup logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

# Remove any existing handlers
logger.handlers = []

# Create console handler with custom formatter
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(CustomFormatter())
logger.addHandler(ch)

# Model initialization
model_name = "SamanthaStorm/tether-multilabel-v6"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

# sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment-v3").to(device)
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment-v3", use_fast=False)
sentiment_model.eval()

emotion_pipeline = hf_pipeline(
    "text-classification",
    model="j-hartmann/emotion-english-distilroberta-base",
    return_all_scores=True,  # Get all emotion scores
    top_k=None,  # Don't limit to top k predictions
    truncation=True,
    device=0 if torch.cuda.is_available() else -1
)

# DARVO model
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1").to(device)
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()

# Constants and Labels
LABELS = [
    "recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness", 
    "blame shifting", "nonabusive", "projection", "insults", 
    "contradictory statements", "obscure language",
    "veiled threats", "stalking language", "false concern", 
    "false equivalence", "future faking"
]

SENTIMENT_LABELS = ["supportive", "undermining"] 

THRESHOLDS = {
    "recovery phase": 0.278,
    "control": 0.287,
    "gaslighting": 0.144,
    "guilt tripping": 0.220,
    "dismissiveness": 0.142,
    "blame shifting": 0.183,
    "projection": 0.253,
    "insults": 0.247,
    "contradictory statements": 0.200,
    "obscure language": 0.455,
    "nonabusive": 0.281,
    # NEW v6 patterns:
    "veiled threats": 0.310,
    "stalking language": 0.339,
    "false concern": 0.334,
    "false equivalence": 0.317,
    "future faking": 0.385
}

PATTERN_WEIGHTS = {
    "recovery phase": 0.7,
    "control": 1.4,
    "gaslighting": 1.3,
    "guilt tripping": 1.2,
    "dismissiveness": 0.9,
    "blame shifting": 1.0,
    "projection": 0.5,
    "insults": 1.4,
    "contradictory statements": 1.0,
    "obscure language": 0.9,
    "nonabusive": 0.0,
    # NEW v6 patterns:
    "veiled threats": 1.6,        # High weight - very dangerous
    "stalking language": 1.8,     # Highest weight - extremely dangerous  
    "false concern": 1.1,         # Moderate weight - manipulative
    "false equivalence": 1.3,     # Enhances DARVO detection
    "future faking": 0.8          # Lower weight - manipulation tactic
}

ESCALATION_QUESTIONS = [
    ("Partner has access to firearms or weapons", 4),
    ("Partner threatened to kill you", 3),
    ("Partner threatened you with a weapon", 3),
    ("Partner has ever choked you, even if you considered it consensual at the time", 4),
    ("Partner injured or threatened your pet(s)", 3),
    ("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
    ("Partner forced or coerced you into unwanted sexual acts", 3),
    ("Partner threatened to take away your children", 2),
    ("Violence has increased in frequency or severity", 3),
    ("Partner monitors your calls/GPS/social media", 2)
]

RISK_STAGE_LABELS = {
    1: "πŸŒ€ Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
    2: "πŸ”₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
    3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attemptβ€”apologies or emotional repair without accountability.",
    4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}

THREAT_MOTIFS = [
    "i'll kill you", "i'm going to hurt you", "you're dead", "you won't survive this",
    "i'll break your face", "i'll bash your head in", "i'll snap your neck",
    "i'll come over there and make you shut up", "i'll knock your teeth out",
    "you're going to bleed", "you want me to hit you?", "i won't hold back next time",
    "i swear to god i'll beat you", "next time, i won't miss", "i'll make you scream",
    "i know where you live", "i'm outside", "i'll be waiting", "i saw you with him",
    "you can't hide from me", "i'm coming to get you", "i'll find you", "i know your schedule",
    "i watched you leave", "i followed you home", "you'll regret this", "you'll be sorry",
    "you're going to wish you hadn't", "you brought this on yourself", "don't push me",
    "you have no idea what i'm capable of", "you better watch yourself",
    "i don't care what happens to you anymore", "i'll make you suffer", "you'll pay for this",
    "i'll never let you go", "you're nothing without me", "if you leave me, i'll kill myself",
    "i'll ruin you", "i'll tell everyone what you did", "i'll make sure everyone knows",
    "i'm going to destroy your name", "you'll lose everyone", "i'll expose you", 
    "your friends will hate you", "i'll post everything", "you'll be cancelled",
    "you'll lose everything", "i'll take the house", "i'll drain your account",
    "you'll never see a dime", "you'll be broke when i'm done", "i'll make sure you lose your job",
    "i'll take your kids", "i'll make sure you have nothing", "you can't afford to leave me",
    "don't make me do this", "you know what happens when i'm mad", "you're forcing my hand",
    "if you just behaved, this wouldn't happen", "this is your fault",
    "you're making me hurt you", "i warned you", "you should have listened"
]

# MOVED TO TOP LEVEL - Fixed tone severity mapping
TONE_SEVERITY = {
    # Highest danger tones
    "obsessive fixation": 4,
    "menacing calm": 4,
    "conditional menace": 4,
    "surveillance intimacy": 4,
    
    # High danger tones  
    "predatory concern": 3,
    "victim cosplay": 3,
    "entitled rage": 3,
    "direct threat": 3,
    
    # Moderate danger tones
    "manipulative hope": 2,
    "false vulnerability": 2,
    "calculated coldness": 2,
    "predictive punishment": 2,
    
    # Existing tones (keep current mappings)
    "emotional threat": 3,
    "forced accountability flip": 3,
    "performative regret": 2,
    "coercive warmth": 2,
    "cold invalidation": 2,
    "weaponized sadness": 2,
    "contradictory gaslight": 2,
    
    # Low risk tones
    "neutral": 0,
    "genuine vulnerability": 0
}

# MOVED TO TOP LEVEL - Helper functions
def log_emotional_tone_usage(tone_tag, patterns):
    """Log tone usage for analytics"""
    logger.debug(f"πŸ” Detected tone tag: {tone_tag} with patterns: {patterns}")
    
    # Track dangerous tone combinations
    dangerous_tones = [
        "obsessive fixation", "menacing calm", "predatory concern",
        "surveillance intimacy", "conditional menace", "victim cosplay"
    ]
    
    if tone_tag in dangerous_tones:
        logger.warning(f"⚠️ Dangerous emotional tone detected: {tone_tag}")

def calculate_tone_risk_boost(tone_tag):
    """Calculate risk boost based on emotional tone severity"""
    return TONE_SEVERITY.get(tone_tag, 0)

def should_show_safety_planning(abuse_score, escalation_risk, detected_patterns):
    """Check if we should show safety planning"""
    if escalation_risk in ["High", "Critical"]:
        return True
    if abuse_score >= 70:
        return True
    dangerous_patterns = ["stalking language", "veiled threats", "threats"]
    if any(pattern in detected_patterns for pattern in dangerous_patterns):
        return True
    return False

def generate_simple_safety_plan(abuse_score, escalation_risk, detected_patterns):
    """Generate a basic safety plan"""
    
    plan = "πŸ›‘οΈ **SAFETY PLANNING RECOMMENDED**\n\n"
    
    if escalation_risk == "Critical" or abuse_score >= 85:
        plan += "🚨 **CRITICAL SAFETY SITUATION**\n\n"
        plan += "**IMMEDIATE ACTIONS:**\n"
        plan += "β€’ Contact domestic violence hotline: **1-800-799-7233** (24/7, free, confidential)\n"
        plan += "β€’ Text START to **88788** for crisis text support\n"
        plan += "β€’ Consider staying with trusted friends/family tonight\n"
        plan += "β€’ Keep phone charged and accessible\n"
        plan += "β€’ Have emergency bag ready (documents, medications, cash)\n"
        plan += "\n**IF IN IMMEDIATE DANGER: Call 911**\n\n"
        
    elif escalation_risk == "High" or abuse_score >= 70:
        plan += "⚠️ **HIGH RISK SITUATION**\n\n"
        plan += "**SAFETY STEPS:**\n"
        plan += "β€’ Contact domestic violence hotline for safety planning: **1-800-799-7233**\n"
        plan += "β€’ Identify 3 trusted people you can contact for help\n"
        plan += "β€’ Plan escape routes and transportation options\n"
        plan += "β€’ Document concerning behaviors with dates and details\n"
        plan += "β€’ Research legal protection options\n\n"
    
    # Add pattern-specific advice
    if "stalking language" in detected_patterns:
        plan += "πŸ” **STALKING BEHAVIORS DETECTED:**\n"
        plan += "β€’ Vary your routines and routes\n"
        plan += "β€’ Check devices for tracking software\n"
        plan += "β€’ Keep record of all stalking incidents\n"
        plan += "β€’ Alert neighbors to watch for suspicious activity\n\n"
        
    if "veiled threats" in detected_patterns:
        plan += "⚠️ **THREATENING LANGUAGE IDENTIFIED:**\n"
        plan += "β€’ Take all threats seriously, even indirect ones\n"
        plan += "β€’ Document all threatening communications\n"
        plan += "β€’ Inform trusted people about threat patterns\n"
        plan += "β€’ Avoid being alone in isolated locations\n\n"
    
    # Always include crisis resources
    plan += "πŸ†˜ **CRISIS RESOURCES (24/7):**\n"
    plan += "β€’ **National DV Hotline:** 1-800-799-7233\n"
    plan += "β€’ **Crisis Text Line:** Text START to 88788\n"
    plan += "β€’ **Online Chat:** thehotline.org\n"
    plan += "β€’ **Emergency:** Call 911\n\n"
    
    plan += "πŸ’™ **Remember:** You are not alone. This is not your fault. You deserve to be safe."
    
    return plan

def detect_rare_threats(text):
    rare_threats = ["necktie party", "permanent solution", "final conversation"]
    if any(threat in text.lower() for threat in rare_threats):
        return [("veiled threats", 0.90, 1.6)]
    return []

def detect_enhanced_threats(text, patterns):
    """Enhanced threat detection for v6 patterns"""
    text_lower = text.lower()
    enhanced_threats = []
    
    # Stalking language indicators
    stalking_phrases = [
        "stop at nothing", "will find you", "know where you", 
        "watching you", "following you", "can't hide",
        "i know your", "saw you with", "you belong to me"
    ]
    
    # Veiled threat indicators  
    veiled_threat_phrases = [
        "some people might", "things happen to people who",
        "be careful", "hope nothing happens", "accidents happen",
        "necktie party", "permanent solution", "wouldn't want"
    ]
    
    # False concern indicators
    false_concern_phrases = [
        "just worried about", "concerned about your", 
        "someone needs to protect", "for your own good"
    ]
    
    if any(phrase in text_lower for phrase in stalking_phrases):
        enhanced_threats.append("stalking language")
    
    if any(phrase in text_lower for phrase in veiled_threat_phrases):
        enhanced_threats.append("veiled threats")
        
    if any(phrase in text_lower for phrase in false_concern_phrases):
        enhanced_threats.append("false concern")
    
    return enhanced_threats

def calculate_enhanced_risk_level(abuse_score, detected_patterns, escalation_risk, darvo_score):
    """Enhanced risk calculation that properly weights dangerous patterns"""
    
    # Start with base risk from escalation system
    base_risk = escalation_risk
    
    # CRITICAL PATTERNS - Auto-elevate to HIGH risk minimum
    critical_patterns = ["stalking language", "veiled threats"]
    has_critical = any(pattern in detected_patterns for pattern in critical_patterns)
    
    # DANGEROUS COMBINATIONS - Auto-elevate to CRITICAL
    dangerous_combos = [
        ("stalking language", "control"),
        ("veiled threats", "stalking language"), 
        ("stalking language", "false concern"),
        ("veiled threats", "control")
    ]
    
    has_dangerous_combo = any(
        all(pattern in detected_patterns for pattern in combo) 
        for combo in dangerous_combos
    )
    
    # FORCE RISK ELEVATION for dangerous patterns
    if has_dangerous_combo:
        return "Critical"
    elif has_critical and abuse_score >= 30:  # Lower threshold for critical patterns
        return "High" 
    elif has_critical:
        return "Moderate"
    elif abuse_score >= 70:
        return "High"
    elif abuse_score >= 50:
        return "Moderate"
    else:
        return base_risk

def get_emotion_profile(text):
    """Get emotion profile from text with all scores"""
    try:
        emotions = emotion_pipeline(text)
        if isinstance(emotions, list) and isinstance(emotions[0], list):
            # Extract all scores from the first prediction
            emotion_scores = emotions[0]
            # Convert to dictionary with lowercase emotion names
            return {e['label'].lower(): round(e['score'], 3) for e in emotion_scores}
        return {}
    except Exception as e:
        logger.error(f"Error in get_emotion_profile: {e}")
        return {
            "sadness": 0.0,
            "joy": 0.0,
            "neutral": 0.0,
            "disgust": 0.0,
            "anger": 0.0,
            "fear": 0.0
        }

# FIXED FUNCTION - Added missing "d" and cleaned up structure
def get_emotional_tone_tag(text, sentiment, patterns, abuse_score):
    """Get emotional tone tag based on emotions and patterns"""
    emotions = get_emotion_profile(text)
    
    sadness = emotions.get("sadness", 0)
    joy = emotions.get("joy", 0)
    neutral = emotions.get("neutral", 0)
    disgust = emotions.get("disgust", 0)
    anger = emotions.get("anger", 0)
    fear = emotions.get("fear", 0)

    text_lower = text.lower()
    
    # 1. Direct Threat Detection
    threat_indicators = [
        "if you", "i'll make", "don't forget", "remember", "regret",
        "i control", "i'll take", "you'll lose", "make sure",
        "never see", "won't let"
    ]
    if (
        any(indicator in text_lower for indicator in threat_indicators) and
        any(p in patterns for p in ["control", "insults"]) and
        (anger > 0.2 or disgust > 0.2 or abuse_score > 70)
    ):
        return "direct threat"
        
    # 2. Obsessive Fixation (for stalking language)
    obsessive_indicators = [
        "stop at nothing", "most desired", "forever", "always will",
        "belong to me", "you're mine", "never let you go", "can't live without"
    ]
    if (
        any(indicator in text_lower for indicator in obsessive_indicators) and
        "stalking language" in patterns and
        (joy > 0.3 or sadness > 0.4 or fear > 0.2)
    ):
        return "obsessive fixation"
    
    # 3. Menacing Calm (for veiled threats)
    veiled_threat_indicators = [
        "some people might", "accidents happen", "be careful",
        "wouldn't want", "things happen", "unfortunate"
    ]
    if (
        any(indicator in text_lower for indicator in veiled_threat_indicators) and
        "veiled threats" in patterns and
        neutral > 0.4 and anger < 0.2
    ):
        return "menacing calm"
    
    # 4. Predatory Concern (for false concern)
    concern_indicators = [
        "worried about", "concerned about", "for your own good",
        "someone needs to", "protect you", "take care of you"
    ]
    if (
        any(indicator in text_lower for indicator in concern_indicators) and
        "false concern" in patterns and
        (joy > 0.2 or neutral > 0.3) and sentiment == "undermining"
    ):
        return "predatory concern"
    
    # 5. Victim Cosplay (for false equivalence/DARVO)
    victim_indicators = [
        "i'm the victim", "you're abusing me", "i'm being hurt",
        "you're attacking me", "i'm innocent", "you're the problem"
    ]
    if (
        any(indicator in text_lower for indicator in victim_indicators) and
        "false equivalence" in patterns and
        sadness > 0.4 and anger > 0.2
    ):
        return "victim cosplay"
    
    # 6. Manipulative Hope (for future faking)
    future_indicators = [
        "i'll change", "we'll be", "i promise", "things will be different",
        "next time", "from now on", "i'll never", "we'll have"
    ]
    if (
        any(indicator in text_lower for indicator in future_indicators) and
        "future faking" in patterns and
        (joy > 0.3 or sadness > 0.3)
    ):
        return "manipulative hope"
    
    # 7. Surveillance Intimacy (for stalking with false intimacy)
    surveillance_indicators = [
        "i know you", "i saw you", "i watched", "i've been",
        "your routine", "where you go", "what you do"
    ]
    if (
        any(indicator in text_lower for indicator in surveillance_indicators) and
        "stalking language" in patterns and
        joy > 0.2 and neutral > 0.2
    ):
        return "surveillance intimacy"
    
    # 8. Conditional Menace (for threats with conditions)
    conditional_indicators = [
        "if you", "unless you", "you better", "don't make me",
        "you wouldn't want", "force me to"
    ]
    if (
        any(indicator in text_lower for indicator in conditional_indicators) and
        any(p in patterns for p in ["veiled threats", "control"]) and
        anger > 0.3 and neutral > 0.2
    ):
        return "conditional menace"
    
    # 9. False Vulnerability (manipulation disguised as weakness)
    vulnerability_indicators = [
        "i can't help", "i need you", "without you i", "you're all i have",
        "i'm lost without", "i don't know what to do"
    ]
    if (
        any(indicator in text_lower for indicator in vulnerability_indicators) and
        any(p in patterns for p in ["guilt tripping", "future faking", "false concern"]) and
        sadness > 0.5 and sentiment == "undermining"
    ):
        return "false vulnerability"
    
    # 10. Entitled Rage (anger with entitlement)
    entitlement_indicators = [
        "you owe me", "after everything", "how dare you", "you should",
        "i deserve", "you have no right"
    ]
    if (
        any(indicator in text_lower for indicator in entitlement_indicators) and
        anger > 0.5 and
        any(p in patterns for p in ["control", "insults", "blame shifting"])
    ):
        return "entitled rage"
    
    # 11. Calculated Coldness (deliberate emotional detachment)
    cold_indicators = [
        "i don't care", "whatever", "your choice", "suit yourself",
        "fine by me", "your loss"
    ]
    calculated_patterns = ["dismissiveness", "obscure language", "control"]
    if (
        any(indicator in text_lower for indicator in cold_indicators) and
        any(p in patterns for p in calculated_patterns) and
        neutral > 0.6 and all(e < 0.2 for e in [anger, sadness, joy])
    ):
        return "calculated coldness"

    # 12. Predictive Punishment  
    future_consequences = [
        "will end up", "you'll be", "you will be", "going to be",
        "will become", "will find yourself", "will realize",
        "you'll regret", "you'll see", "will learn", "truly will",
        "end up alone", "end up miserable" 
    ]
    dismissive_endings = [
        "i'm out", "i'm done", "whatever", "good luck",
        "your choice", "your problem", "regardless", 
        "keep", "keep on"
    ]
    
    if (
        (any(phrase in text_lower for phrase in future_consequences) or
         any(end in text_lower for end in dismissive_endings)) and
        any(p in ["dismissiveness", "control"] for p in patterns) and
        (disgust > 0.2 or neutral > 0.3 or anger > 0.2)
    ):
        return "predictive punishment"
    
    # 13. Performative Regret
    if (
        sadness > 0.3 and
        any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery"]) and
        (sentiment == "undermining" or abuse_score > 40)
    ):
        return "performative regret"

    # 14. Coercive Warmth
    if (
        (joy > 0.2 or sadness > 0.3) and
        any(p in patterns for p in ["control", "gaslighting"]) and
        sentiment == "undermining"
    ):
        return "coercive warmth"

    # 15. Cold Invalidation
    if (
        (neutral + disgust) > 0.4 and
        any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
        sentiment == "undermining"
    ):
        return "cold invalidation"

    # 16. Genuine Vulnerability
    if (
        (sadness + fear) > 0.4 and
        sentiment == "supportive" and
        all(p in ["recovery"] for p in patterns)
    ):
        return "genuine vulnerability"

    # 17. Emotional Threat
    if (
        (anger + disgust) > 0.4 and
        any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
        sentiment == "undermining"
    ):
        return "emotional threat"

    # 18. Weaponized Sadness
    if (
        sadness > 0.5 and
        any(p in patterns for p in ["guilt tripping", "projection"]) and
        sentiment == "undermining"
    ):
        return "weaponized sadness"

    # 19. Contradictory Gaslight
    if (
        (joy + anger + sadness) > 0.4 and
        any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
        sentiment == "undermining"
    ):
        return "contradictory gaslight"

    # 20. Forced Accountability Flip
    if (
        (anger + disgust) > 0.4 and
        any(p in patterns for p in ["blame shifting", "projection"]) and
        sentiment == "undermining"
    ):
        return "forced accountability flip"

    # Emotional Instability Fallback
    if (
        (anger + sadness + disgust) > 0.5 and
        sentiment == "undermining"
    ):
        return "emotional instability"

    return "neutral"

@spaces.GPU
def predict_darvo_score(text):
    """Predict DARVO score for given text"""
    try:
        inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        with torch.no_grad():
            logits = darvo_model(**inputs).logits
        return round(sigmoid(logits.cpu()).item(), 4)
    except Exception as e:
        logger.error(f"Error in DARVO prediction: {e}")
        return 0.0

def detect_weapon_language(text):
    """Detect weapon-related language in text"""
    weapon_keywords = ["knife", "gun", "bomb", "weapon", "kill", "stab"]
    t = text.lower()
    return any(w in t for w in weapon_keywords)

def get_risk_stage(patterns, sentiment):
    """Determine risk stage based on patterns and sentiment"""
    try:
        if "insults" in patterns:
            return 2
        elif "recovery" in patterns:
            return 3
        elif "control" in patterns or "guilt tripping" in patterns:
            return 1
        elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
            return 4
        return 1
    except Exception as e:
        logger.error(f"Error determining risk stage: {e}")
        return 1

def detect_threat_pattern(text, patterns):
    """Detect if a message contains threat patterns"""
    # Threat indicators in text
    threat_words = [
        "regret", "sorry", "pay", "hurt", "suffer", "destroy", "ruin",
        "expose", "tell everyone", "never see", "take away", "lose",
        "control", "make sure", "won't let", "force", "warn", "never",
        "punish", "teach you", "learn", "show you", "remember",
        "if you", "don't forget", "i control", "i'll make sure",  # Added these specific phrases
        "bank account", "phone", "money", "access"  # Added financial control indicators
    ]
    
    # Check for conditional threats (if/then structures)
    text_lower = text.lower()
    conditional_threat = (
        "if" in text_lower and 
        any(word in text_lower for word in ["regret", "make sure", "control"])
    )
    
    has_threat_words = any(word in text_lower for word in threat_words)
    
    # Check for threat patterns
    threat_patterns = {"control", "gaslighting", "blame shifting", "insults"}
    has_threat_patterns = any(p in threat_patterns for p in patterns)
    
    return has_threat_words or has_threat_patterns or conditional_threat

def detect_compound_threat(text, patterns):
    """Detect compound threats in a single message"""
    try:
        # Rule A: Single Message Multiple Patterns
        high_risk_patterns = {"control", "gaslighting", "blame shifting", "insults"}
        high_risk_count = sum(1 for p in patterns if p in high_risk_patterns)
        
        has_threat = detect_threat_pattern(text, patterns)
        
        # Special case for control + threats
        has_control = "control" in patterns
        has_conditional_threat = "if" in text.lower() and any(word in text.lower() 
            for word in ["regret", "make sure", "control"])
        
        # Single message compound threat
        if (has_threat and high_risk_count >= 2) or (has_control and has_conditional_threat):
            return True, "single_message"
            
        return False, None
    except Exception as e:
        logger.error(f"Error in compound threat detection: {e}")
        return False, None

def analyze_message_batch_threats(messages, results):
    """Analyze multiple messages for compound threats"""
    threat_messages = []
    support_messages = []
    
    for i, (msg, (result, _)) in enumerate(zip(messages, results)):
        if not msg.strip():  # Skip empty messages
            continue
            
        patterns = result[1]    # Get detected patterns
        
        # Check for threat in this message
        if detect_threat_pattern(msg, patterns):
            threat_messages.append(i)
            
        # Check for supporting patterns
        if any(p in {"control", "gaslighting", "blame shifting"} for p in patterns):
            support_messages.append(i)
    
    # Rule B: Multi-Message Accumulation
    if len(threat_messages) >= 2:
        return True, "multiple_threats"
    elif len(threat_messages) == 1 and len(support_messages) >= 2:
        return True, "threat_with_support"
        
    return False, None

@spaces.GPU
def compute_abuse_score(matched_scores, sentiment):
    """Compute abuse score from matched patterns and sentiment"""
    try:
        if not matched_scores:
            logger.debug("No matched scores, returning 0")
            return 0.0
            
        # Calculate weighted score
        total_weight = sum(weight for _, _, weight in matched_scores)
        if total_weight == 0:
            logger.debug("Total weight is 0, returning 0")
            return 0.0
        
        # Get highest pattern scores
        pattern_scores = [(label, score) for label, score, _ in matched_scores]
        sorted_scores = sorted(pattern_scores, key=lambda x: x[1], reverse=True)
        logger.debug(f"Sorted pattern scores: {sorted_scores}")
        
        # Base score calculation
        weighted_sum = sum(score * weight for _, score, weight in matched_scores)
        base_score = (weighted_sum / total_weight) * 100
        logger.debug(f"Initial base score: {base_score:.1f}")
        
        # Cap maximum score based on pattern severity
        max_score = 85.0  # Set maximum possible score
        if any(label in {'control', 'gaslighting'} for label, _, _ in matched_scores):
            max_score = 90.0
            logger.debug(f"Increased max score to {max_score} due to high severity patterns")
        
        # Apply diminishing returns for multiple patterns
        if len(matched_scores) > 1:
            multiplier = 1 + (0.1 * (len(matched_scores) - 1))
            base_score *= multiplier
            logger.debug(f"Applied multiplier {multiplier:.2f} for {len(matched_scores)} patterns")
            
        # Apply sentiment modifier
        if sentiment == "supportive":
            base_score *= 0.85
            logger.debug("Applied 15% reduction for supportive sentiment")
        
        final_score = min(round(base_score, 1), max_score)
        logger.debug(f"Final abuse score: {final_score}")
        return final_score

    except Exception as e:
        logger.error(f"Error computing abuse score: {e}")
        return 0.0
        
def detect_explicit_abuse(text):
    """Improved explicit abuse detection with word boundary checking"""
    import re
    
    explicit_abuse_words = ['fuck', 'bitch', 'shit', 'dick']  # Removed 'ass' 
    # Add more specific patterns for actual abusive uses of 'ass'
    abusive_ass_patterns = [
        r'\bass\b(?!\s*glass)',  # 'ass' not followed by 'glass'
        r'\bdumb\s*ass\b',
        r'\bkiss\s*my\s*ass\b',
        r'\bget\s*your\s*ass\b'
    ]
    
    text_lower = text.lower()
    
    # Check basic explicit words
    for word in explicit_abuse_words:
        if re.search(r'\b' + word + r'\b', text_lower):
            return True
    
    # Check specific abusive 'ass' patterns
    for pattern in abusive_ass_patterns:
        if re.search(pattern, text_lower):
            return True
    
    return False
    
@spaces.GPU
def analyze_single_message(text, thresholds):
    """Analyze a single message for abuse patterns"""
    logger.debug("\n=== DEBUG START ===")
    logger.debug(f"Input text: {text}")
    
    try:
        if not text.strip():
            logger.debug("Empty text, returning zeros")
            return 0.0, [], [], {"label": "none"}, 1, 0.0, None
            
        # EARLY SUPPORTIVE MESSAGE CHECK
        innocent_indicators = [
            'broken', 'not working', 'cracked', 'glass', 'screen', 'phone',
            'device', 'battery', 'charger', 'wifi', 'internet', 'computer',
            'sorry', 'apologize', 'my fault', 'mistake'
        ]

        # If message contains innocent indicators and is short/simple
        if (any(indicator in text.lower() for indicator in innocent_indicators) and 
            len(text.split()) < 20 and 
            not any(threat in text.lower() for threat in ['kill', 'hurt', 'destroy', 'hate'])):
        
            # Run quick sentiment check
            sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
            sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()}
            with torch.no_grad():
                sent_logits = sentiment_model(**sent_inputs).logits[0]
                sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
        
            # If sentiment is strongly supportive, return early
            if sent_probs[0] > 0.8:  # 80% supportive
                logger.debug("Early return: Message appears to be innocent/supportive")
                return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral"

        # Check for explicit abuse (moved AFTER early return check)
        explicit_abuse = detect_explicit_abuse(text)
        logger.debug(f"Explicit abuse detected: {explicit_abuse}")
        
        # Abuse model inference 
        inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = model(**inputs)
        raw_scores = torch.sigmoid(outputs.logits.squeeze(0)).cpu().numpy()
        
        # Log raw model outputs
        logger.debug("\nRaw model scores:")
        for label, score in zip(LABELS, raw_scores):
            logger.debug(f"{label}: {score:.3f}")

        # Get predictions and sort them
        predictions = list(zip(LABELS, raw_scores))
        sorted_predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
        logger.debug("\nTop 3 predictions:")
        for label, score in sorted_predictions[:3]:
            logger.debug(f"{label}: {score:.3f}")
        
        # Apply thresholds
        threshold_labels = []
        if explicit_abuse:
            threshold_labels.append("insults")
            logger.debug("\nForced inclusion of 'insults' due to explicit abuse")
            
        for label, score in sorted_predictions:
            base_threshold = thresholds.get(label, 0.25)
            if explicit_abuse:
                base_threshold *= 0.5
            if score > base_threshold:
                if label not in threshold_labels:
                    threshold_labels.append(label)
        
        logger.debug(f"\nLabels that passed thresholds: {threshold_labels}")

        # Calculate matched scores
        matched_scores = []
        for label in threshold_labels:
            score = raw_scores[LABELS.index(label)]
            weight = PATTERN_WEIGHTS.get(label, 1.0)
            if explicit_abuse and label == "insults":
                weight *= 1.5
            matched_scores.append((label, score, weight))
            
        # Get sentiment
        sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
        sent_inputs = {k: v.to(device) for k, v in sent_inputs.items()}
        with torch.no_grad():
            sent_logits = sentiment_model(**sent_inputs).logits[0]
            sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
    
        # Add detailed logging
        logger.debug("\n🎭 SENTIMENT ANALYSIS DETAILS")
        logger.debug(f"Raw logits: {sent_logits}")
        logger.debug(f"Probabilities: supportive={sent_probs[0]:.3f}, undermining={sent_probs[1]:.3f}")

        # Make sure we're using the correct index mapping
        sentiment = SENTIMENT_LABELS[int(np.argmax(sent_probs))]
        logger.debug(f"Selected sentiment: {sentiment}")
        
        enhanced_patterns = detect_enhanced_threats(text, threshold_labels)
        for pattern in enhanced_patterns:
            if pattern not in threshold_labels:
                threshold_labels.append(pattern)
                # Add to matched_scores with high confidence
                weight = PATTERN_WEIGHTS.get(pattern, 1.0)
                matched_scores.append((pattern, 0.85, weight))
                
        # Calculate abuse score
        abuse_score = compute_abuse_score(matched_scores, sentiment)
        if explicit_abuse:
            abuse_score = max(abuse_score, 70.0)
            
        # Apply sentiment-based score capping BEFORE compound threat check
        if sentiment == "supportive" and not explicit_abuse:
            # For supportive messages, cap the abuse score much lower
            abuse_score = min(abuse_score, 30.0)
            logger.debug(f"Capped abuse score to {abuse_score} due to supportive sentiment")

        # Check for compound threats
        compound_threat_flag, threat_type = detect_compound_threat(text, threshold_labels)

        # Apply compound threat override only for non-supportive messages
        if compound_threat_flag and sentiment != "supportive":
            logger.debug(f"⚠️ Compound threat detected in message: {threat_type}")
            abuse_score = max(abuse_score, 85.0)

        # Get DARVO score
        darvo_score = predict_darvo_score(text)

        # Get tone using emotion-based approach
        tone_tag = get_emotional_tone_tag(text, sentiment, threshold_labels, abuse_score)
        
        # Log tone usage
        log_emotional_tone_usage(tone_tag, threshold_labels)
        
        # Check for the specific combination (final safety check)
        highest_pattern = max(matched_scores, key=lambda x: x[1])[0] if matched_scores else None
        if sentiment == "supportive" and tone_tag == "neutral" and highest_pattern == "obscure language":
            logger.debug("Message classified as likely non-abusive (supportive, neutral, and obscure language). Returning low risk.")
            return 0.0, [], [], {"label": "supportive"}, 1, 0.0, "neutral"

        # Set stage
        stage = 2 if explicit_abuse or abuse_score > 70 else 1
        
        logger.debug("=== DEBUG END ===\n")

        return abuse_score, threshold_labels, matched_scores, {"label": sentiment}, stage, darvo_score, tone_tag

    except Exception as e:
        logger.error(f"Error in analyze_single_message: {e}")
        return 0.0, [], [], {"label": "error"}, 1, 0.0, None

def generate_abuse_score_chart(dates, scores, patterns):
    """Generate a timeline chart of abuse scores"""
    try:
        plt.figure(figsize=(10, 6))
        plt.clf()
        
        # Create new figure
        fig, ax = plt.subplots(figsize=(10, 6))
        
        # Plot points and lines
        x = range(len(scores))
        plt.plot(x, scores, 'bo-', linewidth=2, markersize=8)
        
        # Add labels for each point with highest scoring pattern
        for i, (score, pattern) in enumerate(zip(scores, patterns)):
            # Get the pattern and its score
            plt.annotate(
                f'{pattern}\n{score:.0f}%',
                (i, score),
                textcoords="offset points",
                xytext=(0, 10),
                ha='center',
                bbox=dict(
                    boxstyle='round,pad=0.5',
                    fc='white',
                    ec='gray',
                    alpha=0.8
                )
            )
        
        # Customize the plot
        plt.ylim(-5, 105)
        plt.grid(True, linestyle='--', alpha=0.7)
        plt.title('Abuse Pattern Timeline', pad=20, fontsize=12)
        plt.ylabel('Abuse Score %')
        
        # X-axis labels
        plt.xticks(x, dates, rotation=45)
        
        # Risk level bands with better colors
        plt.axhspan(0, 50, color='#90EE90', alpha=0.2)   # light green - Low Risk
        plt.axhspan(50, 70, color='#FFD700', alpha=0.2)  # gold - Moderate Risk
        plt.axhspan(70, 85, color='#FFA500', alpha=0.2)  # orange - High Risk
        plt.axhspan(85, 100, color='#FF6B6B', alpha=0.2) # light red - Critical Risk
        
        # Add risk level labels
        plt.text(-0.2, 25, 'Low Risk', rotation=90, va='center')
        plt.text(-0.2, 60, 'Moderate Risk', rotation=90, va='center')
        plt.text(-0.2, 77.5, 'High Risk', rotation=90, va='center')
        plt.text(-0.2, 92.5, 'Critical Risk', rotation=90, va='center')
        
        # Adjust layout
        plt.tight_layout()
        
        # Convert plot to image
        buf = io.BytesIO()
        plt.savefig(buf, format='png', bbox_inches='tight')
        buf.seek(0)
        plt.close('all')  # Close all figures to prevent memory leaks
        
        return Image.open(buf)
    except Exception as e:
        logger.error(f"Error generating abuse score chart: {e}")
        return None

def analyze_composite(msg1, msg2, msg3, *answers_and_none):
    """Analyze multiple messages and checklist responses"""
    logger.debug("\nπŸ”„ STARTING NEW ANALYSIS")
    logger.debug("=" * 50)
    
    # Define severity categories at the start
    high = {'control'}
    moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 
               'contradictory statements', 'guilt tripping'}
    low = {'blame shifting', 'projection', 'recovery'}
    
    try:
        # Process checklist responses
        logger.debug("\nπŸ“‹ CHECKLIST PROCESSING")
        logger.debug("=" * 50)
        none_selected_checked = answers_and_none[-1]
        responses_checked = any(answers_and_none[:-1])
        none_selected = not responses_checked and none_selected_checked
        
        logger.debug("Checklist Status:")
        logger.debug(f"  β€’ None Selected Box: {'βœ“' if none_selected_checked else 'βœ—'}")
        logger.debug(f"  β€’ Has Responses: {'βœ“' if responses_checked else 'βœ—'}")
        logger.debug(f"  β€’ Final Status: {'None Selected' if none_selected else 'Has Selections'}")

        if none_selected:
            escalation_score = 0
            escalation_note = "Checklist completed: no danger items reported."
            escalation_completed = True
            logger.debug("\nβœ“ Checklist: No items selected")
        elif responses_checked:
            escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
            escalation_note = "Checklist completed."
            escalation_completed = True
            logger.debug(f"\nπŸ“Š Checklist Score: {escalation_score}")
            
            # Log checked items
            logger.debug("\n⚠️ Selected Risk Factors:")
            for (q, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]):
                if a:
                    logger.debug(f"  β€’ [{w} points] {q}")
        else:
            escalation_score = None
            escalation_note = "Checklist not completed."
            escalation_completed = False
            logger.debug("\n❗ Checklist: Not completed")

        # Process messages
        logger.debug("\nπŸ“ MESSAGE PROCESSING")
        logger.debug("=" * 50)
        messages = [msg1, msg2, msg3]
        active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
        logger.debug(f"Active Messages: {len(active)} of 3")
        
        if not active:
            logger.debug("❌ Error: No messages provided")
            return "Please enter at least one message.", None

        # Detect threats
        logger.debug("\n🚨 THREAT DETECTION")
        logger.debug("=" * 50)
        
        def normalize(text):
            import unicodedata
            text = text.lower().strip()
            text = unicodedata.normalize("NFKD", text)
            text = text.replace("'", "'")
            return re.sub(r"[^a-z0-9 ]", "", text)

        def detect_threat_motifs(message, motif_list):
            norm_msg = normalize(message)
            return [motif for motif in motif_list if normalize(motif) in norm_msg]

        # Analyze threats and patterns
        immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
        flat_threats = [t for sublist in immediate_threats for t in sublist]
        threat_risk = "Yes" if flat_threats else "No"
        
        # Analyze each message
        logger.debug("\nπŸ” INDIVIDUAL MESSAGE ANALYSIS")
        logger.debug("=" * 50)
        results = []
        for m, d in active:
            logger.debug(f"\nπŸ“ ANALYZING {d}")
            logger.debug("-" * 40)  # Separator for each message
            result = analyze_single_message(m, THRESHOLDS.copy())

            # Check for non-abusive classification and skip further analysis
            if result[0] == 0.0 and result[1] == [] and result[3] == {"label": "supportive"} and result[4] == 1 and result[5] == 0.0 and result[6] == "neutral":
                logger.debug(f"βœ“ {d} classified as non-abusive, skipping further analysis.")
                continue  # Skip to the next message

            results.append((result, d))
            
            # Unpack results for cleaner logging
            abuse_score, patterns, matched_scores, sentiment, stage, darvo_score, tone = result
            
            # Log core metrics
            logger.debug("\nπŸ“Š CORE METRICS")
            logger.debug(f"  β€’ Abuse Score: {abuse_score:.1f}%")
            logger.debug(f"  β€’ DARVO Score: {darvo_score:.3f}")
            logger.debug(f"  β€’ Risk Stage: {stage}")
            logger.debug(f"  β€’ Sentiment: {sentiment['label']}")
            logger.debug(f"  β€’ Tone: {tone}")

            # Log detected patterns with scores
            if patterns:
                logger.debug("\n🎯 DETECTED PATTERNS")
                for label, score, weight in matched_scores:
                    severity = "❗HIGH" if label in high else "⚠️ MODERATE" if label in moderate else "πŸ“ LOW"
                    logger.debug(f"  β€’ {severity} | {label}: {score:.3f} (weight: {weight})")
            else:
                logger.debug("\nβœ“ No abuse patterns detected")

        # Extract scores and metadata
        abuse_scores = [r[0][0] for r in results]
        stages = [r[0][4] for r in results]
        darvo_scores = [r[0][5] for r in results]
        tone_tags = [r[0][6] for r in results]
        dates_used = [r[1] for r in results]

        # Pattern Analysis Summary
        logger.debug("\nπŸ“ˆ PATTERN ANALYSIS SUMMARY")
        logger.debug("=" * 50)
        predicted_labels = [label for r in results for label in r[0][1]]
        
        if predicted_labels:
            logger.debug("Detected Patterns Across All Messages:")
            pattern_counts = Counter(predicted_labels)
            
            # Log high severity patterns first
            high_patterns = [p for p in pattern_counts if p in high]
            if high_patterns:
                logger.debug("\n❗ HIGH SEVERITY PATTERNS:")
                for p in high_patterns:
                    logger.debug(f"  β€’ {p} (Γ—{pattern_counts[p]})")
            
            # Then moderate
            moderate_patterns = [p for p in pattern_counts if p in moderate]
            if moderate_patterns:
                logger.debug("\n⚠️ MODERATE SEVERITY PATTERNS:")
                for p in moderate_patterns:
                    logger.debug(f"  β€’ {p} (Γ—{pattern_counts[p]})")
            
            # Then low
            low_patterns = [p for p in pattern_counts if p in low]
            if low_patterns:
                logger.debug("\nπŸ“ LOW SEVERITY PATTERNS:")
                for p in low_patterns:
                    logger.debug(f"  β€’ {p} (Γ—{pattern_counts[p]})")
        else:
            logger.debug("βœ“ No patterns detected across messages")

        # Pattern Severity Analysis
        logger.debug("\nβš–οΈ SEVERITY ANALYSIS")
        logger.debug("=" * 50)
        counts = {'high': 0, 'moderate': 0, 'low': 0}
        for label in predicted_labels:
            if label in high:
                counts['high'] += 1
            elif label in moderate:
                counts['moderate'] += 1
            elif label in low:
                counts['low'] += 1

        logger.debug("Pattern Distribution:")
        if counts['high'] > 0:
            logger.debug(f"  ❗ High Severity: {counts['high']}")
        if counts['moderate'] > 0:
            logger.debug(f"  ⚠️ Moderate Severity: {counts['moderate']}")
        if counts['low'] > 0:
            logger.debug(f"  πŸ“ Low Severity: {counts['low']}")
        
        total_patterns = sum(counts.values())
        if total_patterns > 0:
            logger.debug(f"\nSeverity Percentages:")
            logger.debug(f"  β€’ High: {(counts['high']/total_patterns)*100:.1f}%")
            logger.debug(f"  β€’ Moderate: {(counts['moderate']/total_patterns)*100:.1f}%")
            logger.debug(f"  β€’ Low: {(counts['low']/total_patterns)*100:.1f}%")
            
        # Risk Assessment
        logger.debug("\n🎯 RISK ASSESSMENT")
        logger.debug("=" * 50)
        if counts['high'] >= 2 and counts['moderate'] >= 2:
            pattern_escalation_risk = "Critical"
            logger.debug("❗❗ CRITICAL RISK")
            logger.debug("  β€’ Multiple high and moderate patterns detected")
            logger.debug(f"  β€’ High patterns: {counts['high']}")
            logger.debug(f"  β€’ Moderate patterns: {counts['moderate']}")
        elif (counts['high'] >= 2 and counts['moderate'] >= 1) or \
             (counts['moderate'] >= 3) or \
             (counts['high'] >= 1 and counts['moderate'] >= 2):
            pattern_escalation_risk = "High"
            logger.debug("❗ HIGH RISK")
            logger.debug("  β€’ Significant pattern combination detected")
            logger.debug(f"  β€’ High patterns: {counts['high']}")
            logger.debug(f"  β€’ Moderate patterns: {counts['moderate']}")
        elif (counts['moderate'] == 2) or \
             (counts['high'] == 1 and counts['moderate'] == 1) or \
             (counts['moderate'] == 1 and counts['low'] >= 2) or \
             (counts['high'] == 1 and sum(counts.values()) == 1):
            pattern_escalation_risk = "Moderate"
            logger.debug("⚠️ MODERATE RISK")
            logger.debug("  β€’ Concerning pattern combination detected")
            logger.debug(f"  β€’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}")
        else:
            pattern_escalation_risk = "Low"
            logger.debug("πŸ“ LOW RISK")
            logger.debug("  β€’ Limited pattern severity detected")
            logger.debug(f"  β€’ Pattern distribution: H:{counts['high']}, M:{counts['moderate']}, L:{counts['low']}")

        # Checklist Risk Assessment
        logger.debug("\nπŸ“‹ CHECKLIST RISK ASSESSMENT")
        logger.debug("=" * 50)
        checklist_escalation_risk = "Unknown" if escalation_score is None else (
            "Critical" if escalation_score >= 20 else
            "Moderate" if escalation_score >= 10 else
            "Low"
        )
        if escalation_score is not None:
            logger.debug(f"Score: {escalation_score}/29")
            logger.debug(f"Risk Level: {checklist_escalation_risk}")
            if escalation_score >= 20:
                logger.debug("❗❗ CRITICAL: Score indicates severe risk")
            elif escalation_score >= 10:
                logger.debug("⚠️ MODERATE: Score indicates concerning risk")
            else:
                logger.debug("πŸ“ LOW: Score indicates limited risk")
        else:
            logger.debug("❓ Risk Level: Unknown (checklist not completed)")

        # Escalation Analysis
        logger.debug("\nπŸ“ˆ ESCALATION ANALYSIS")
        logger.debug("=" * 50)
        escalation_bump = 0
        for result, msg_id in results:
            abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
            logger.debug(f"\nπŸ” Message {msg_id} Risk Factors:")
            
            factors = []
            if darvo_score > 0.65:
                escalation_bump += 3
                factors.append(f"β–² +3: High DARVO score ({darvo_score:.3f})")
            if tone_tag in ["forced accountability flip", "emotional threat"]:
                escalation_bump += 2
                factors.append(f"β–² +2: Concerning tone ({tone_tag})")
            if abuse_score > 80:
                escalation_bump += 2
                factors.append(f"β–² +2: High abuse score ({abuse_score:.1f}%)")
            if stage == 2:
                escalation_bump += 3
                factors.append("β–² +3: Escalation stage")
                
            if factors:
                for factor in factors:
                    logger.debug(f"  {factor}")
            else:
                logger.debug("  βœ“ No escalation factors")

        logger.debug(f"\nπŸ“Š Total Escalation Bump: +{escalation_bump}")
        
        # Check for compound threats across messages
        compound_threat_flag, threat_type = analyze_message_batch_threats(
            [msg1, msg2, msg3], results
        )

        if compound_threat_flag:
            logger.debug(f"⚠️ Compound threat detected across messages: {threat_type}")
            pattern_escalation_risk = "Critical"  # Override risk level
            logger.debug("Risk level elevated to CRITICAL due to compound threats")

        # Combined Risk Calculation
        logger.debug("\n🎯 FINAL RISK CALCULATION")
        logger.debug("=" * 50)
        def rank(label):
            return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)

        combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
        logger.debug("Risk Components:")
        logger.debug(f"  β€’ Pattern Risk ({pattern_escalation_risk}): +{rank(pattern_escalation_risk)}")
        logger.debug(f"  β€’ Checklist Risk ({checklist_escalation_risk}): +{rank(checklist_escalation_risk)}")
        logger.debug(f"  β€’ Escalation Bump: +{escalation_bump}")
        logger.debug(f"  = Combined Score: {combined_score}")
        
        escalation_risk = (
            "Critical" if combined_score >= 6 else
            "High" if combined_score >= 4 else
            "Moderate" if combined_score >= 2 else
            "Low"
        )
        logger.debug(f"\n⚠️ Final Escalation Risk: {escalation_risk}")
        
        # Generate Output Text
        logger.debug("\nπŸ“ GENERATING OUTPUT")
        logger.debug("=" * 50)
        if escalation_score is None:
            escalation_text = (
                "🚫 **Escalation Potential: Unknown** (Checklist not completed)\n"
                "⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
            )
            hybrid_score = 0
            logger.debug("Generated output for incomplete checklist")
        elif escalation_score == 0:
            escalation_text = (
                "βœ… **Escalation Checklist Completed:** No danger items reported.\n"
                "🧭 **Escalation potential estimated from detected message patterns only.**\n"
                f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
                f"β€’ Checklist Risk: None reported\n"
                f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
            )
            hybrid_score = escalation_bump
            logger.debug("Generated output for no-risk checklist")
        else:
            hybrid_score = escalation_score + escalation_bump
            escalation_text = (
                f"πŸ“ˆ **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
                "πŸ“‹ This score combines your safety checklist answers *and* detected high-risk behavior.\n"
                f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
                f"β€’ Checklist Risk: {checklist_escalation_risk}\n"
                f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
            )
            logger.debug(f"Generated output with hybrid score: {hybrid_score}/29")

        # Final Metrics
        logger.debug("\nπŸ“Š FINAL METRICS")
        logger.debug("=" * 50)
        composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
        logger.debug(f"Composite Abuse Score: {composite_abuse}%")
        
        most_common_stage = max(set(stages), key=stages.count)
        logger.debug(f"Most Common Stage: {most_common_stage}")
        
        avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
        logger.debug(f"Average DARVO Score: {avg_darvo}")
        
        final_risk_level = calculate_enhanced_risk_level(
            composite_abuse, 
            predicted_labels,
            escalation_risk,
            avg_darvo
        )
        
        # Override escalation_risk with the enhanced version
        escalation_risk = final_risk_level
        
        # Generate Final Report
        logger.debug("\nπŸ“„ GENERATING FINAL REPORT")
        logger.debug("=" * 50)
        out = f"Abuse Intensity: {composite_abuse}%\n"
        
        # Add detected patterns to output
        if predicted_labels:
            out += "πŸ” Detected Patterns:\n"
            if high_patterns:
                patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in high_patterns)
                out += f"❗ High Severity: {patterns_str}\n"
            if moderate_patterns:
                patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in moderate_patterns)
                out += f"⚠️ Moderate Severity: {patterns_str}\n"
            if low_patterns:
                patterns_str = ", ".join(f"{p} ({pattern_counts[p]}x)" for p in low_patterns)
                out += f"πŸ“ Low Severity: {patterns_str}\n"
        out += "\n"

        out += "πŸ“Š This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"

        # Risk Level Assessment
        risk_level = final_risk_level
        logger.debug(f"Final Risk Level: {risk_level}")

        # Add Risk Description
        risk_descriptions = {
            "Critical": (
                "🚨 **Risk Level: Critical**\n"
                "Multiple severe abuse patterns detected. This situation shows signs of "
                "dangerous escalation and immediate intervention may be needed."
            ),
            "High": (
                "⚠️ **Risk Level: High**\n"
                "Strong abuse patterns detected. This situation shows concerning "
                "signs of manipulation and control."
            ),
            "Moderate": (
                "⚑ **Risk Level: Moderate**\n"
                "Concerning patterns detected. While not severe, these behaviors "
                "indicate unhealthy relationship dynamics."
            ),
            "Low": (
                "πŸ“ **Risk Level: Low**\n"
                "Minor concerning patterns detected. While present, the detected "
                "behaviors are subtle or infrequent."
            )
        }
        
        out += risk_descriptions[risk_level]
        out += f"\n\n{RISK_STAGE_LABELS[most_common_stage]}"
        logger.debug("Added risk description and stage information")

        # Add DARVO Analysis
        if avg_darvo > 0.25:
            level = "moderate" if avg_darvo < 0.65 else "high"
            out += f"\n\n🎭 **DARVO Score: {avg_darvo}** β†’ This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
            logger.debug(f"Added DARVO analysis ({level} level)")

        # Add Emotional Tones
        logger.debug("\n🎭 Adding Emotional Tones")
        out += "\n\n🎭 **Emotional Tones Detected:**\n"
        for i, tone in enumerate(tone_tags):
            out += f"β€’ Message {i+1}: *{tone or 'none'}*\n"
            logger.debug(f"Message {i+1} tone: {tone}")

        # Add Threats Section
        logger.debug("\n⚠️ Adding Threat Analysis")
        if flat_threats:
            out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
            for t in set(flat_threats):
                out += f"β€’ \"{t}\"\n"
            out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
            logger.debug(f"Added {len(set(flat_threats))} unique threat warnings")
        else:
            out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
            out += "This does *not* rule out risk, but no direct threat phrases were matched."
            logger.debug("No threats to add")

        # Generate Timeline
        logger.debug("\nπŸ“ˆ Generating Timeline")
        pattern_labels = []
        for result, _ in results:
            matched_scores = result[2]  # Get the matched_scores from the result tuple
            if matched_scores:
                # Sort matched_scores by score and get the highest scoring pattern
                highest_pattern = max(matched_scores, key=lambda x: x[1])
                pattern_labels.append(highest_pattern[0])  # Add the pattern name
            else:
                pattern_labels.append("none")

        logger.debug("Pattern labels for timeline:")
        for i, (pattern, score) in enumerate(zip(pattern_labels, abuse_scores)):
            logger.debug(f"Message {i+1}: {pattern} ({score:.1f}%)")

        timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
        logger.debug("Timeline generated successfully")
        
        # Add Escalation Text
        out += "\n\n" + escalation_text
        logger.debug("Added escalation text to output")
        
        logger.debug("\nβœ… ANALYSIS COMPLETE")
        logger.debug("=" * 50)

        # SAFETY PLANNING CHECK
        # Check if safety planning should be offered
        show_safety = should_show_safety_planning(
            composite_abuse, 
            escalation_risk, 
            predicted_labels
        )
        
        safety_plan = ""
        if show_safety:
            # Generate safety plan
            safety_plan = generate_simple_safety_plan(
                composite_abuse,
                escalation_risk, 
                predicted_labels
            )
            
            # Add notice to main results
            out += "\n\n" + "πŸ›‘οΈ " + "="*48
            out += "\n**SAFETY PLANNING AVAILABLE**"
            out += "\n" + "="*50
            out += "\n\nBased on your analysis results, we've generated a safety plan."
            out += "\nCheck the 'Safety Plan' output below for personalized guidance."
        
        return out, timeline_image, safety_plan

    except Exception as e:
        logger.error("\n❌ ERROR IN ANALYSIS")
        logger.error("=" * 50)
        logger.error(f"Error type: {type(e).__name__}")
        logger.error(f"Error message: {str(e)}")
        logger.error(f"Traceback:\n{traceback.format_exc()}")
        return "An error occurred during analysis.", None, ""

def format_results_for_new_ui(analysis_output, timeline_image, safety_plan):
    """
    Convert your existing analysis output into the format needed for the new UI
    """
    try:
        # Parse your existing text output to extract structured data
        lines = analysis_output.split('\n')
        
        # Extract abuse intensity
        abuse_intensity = 0
        for line in lines:
            if line.startswith('Abuse Intensity:'):
                abuse_intensity = int(re.findall(r'\d+', line)[0])
                break
        
        # Extract DARVO score
        darvo_score = 0.0
        for line in lines:
            if 'DARVO Score:' in line:
                # Extract number from line like "🎭 **DARVO Score: 0.456**"
                darvo_match = re.search(r'DARVO Score: ([\d.]+)', line)
                if darvo_match:
                    darvo_score = float(darvo_match.group(1))
                break
        
        # Extract emotional tones
        emotional_tones = []
        in_tones_section = False
        for line in lines:
            if '🎭 **Emotional Tones Detected:**' in line:
                in_tones_section = True
                continue
            elif in_tones_section and line.strip():
                if line.startswith('β€’ Message'):
                    # Extract tone from line like "β€’ Message 1: *menacing calm*"
                    tone_match = re.search(r'\*([^*]+)\*', line)
                    if tone_match:
                        tone = tone_match.group(1)
                        emotional_tones.append(tone if tone != 'none' else 'neutral')
                    else:
                        emotional_tones.append('neutral')
                elif not line.startswith('β€’') and line.strip():
                    break
        
        # Determine risk level based on your existing logic
        if abuse_intensity >= 85:
            risk_level = 'critical'
        elif abuse_intensity >= 70:
            risk_level = 'high'
        elif abuse_intensity >= 50:
            risk_level = 'moderate'
        else:
            risk_level = 'low'
        
        # FIXED: Extract detected patterns properly
        patterns = []
        in_patterns_section = False
        
        # Define valid pattern names to filter against
        valid_patterns = {
            "recovery phase", "control", "gaslighting", "guilt tripping", "dismissiveness", 
            "blame shifting", "nonabusive", "projection", "insults", 
            "contradictory statements", "obscure language",
            "veiled threats", "stalking language", "false concern", 
            "false equivalence", "future faking"
        }
        
        for line in lines:
            if 'πŸ” Detected Patterns:' in line:
                in_patterns_section = True
                continue
            elif in_patterns_section and line.strip():
                if line.startswith('❗'):
                    severity = 'high'
                elif line.startswith('⚠️'):
                    severity = 'moderate'
                elif line.startswith('πŸ“'):
                    severity = 'low'
                else:
                    continue
                
                # Extract pattern text after the severity indicator
                if ':' in line:
                    pattern_text = line.split(':', 1)[1].strip()
                else:
                    pattern_text = line[2:].strip()  # Remove emoji and space
                
                # Parse individual patterns from the text
                # Handle format like "blame shifting (1x), projection (2x)"
                pattern_parts = pattern_text.split(',')
                
                for part in pattern_parts:
                    # Clean up the pattern name
                    pattern_name = part.strip()
                    
                    # Remove count indicators like "(1x)", "(2x)", etc.
                    pattern_name = re.sub(r'\s*\(\d+x?\)', '', pattern_name)
                    
                    # Remove any remaining special characters and clean
                    pattern_name = pattern_name.strip().lower()
                    
                    # Only add if it's a valid pattern name
                    if pattern_name in valid_patterns:
                        patterns.append({
                            'name': pattern_name.replace('_', ' ').title(),
                            'severity': severity,
                            'description': get_pattern_description(pattern_name)
                        })
            elif line.strip() and not line.startswith(('❗', '⚠️', 'πŸ“')) and in_patterns_section:
                # Exit patterns section when we hit a non-pattern line
                break
        
        # Generate personalized recommendations
        recommendations = generate_personalized_recommendations(abuse_intensity, patterns, safety_plan)
        
        return {
            'riskLevel': risk_level,
            'riskScore': abuse_intensity,
            'primaryConcerns': patterns[:3],  # Top 3 most important
            'allPatterns': patterns,
            'riskStage': extract_risk_stage(analysis_output),
            'emotionalTones': emotional_tones,
            'darvoScore': darvo_score,
            'personalizedRecommendations': recommendations,
            'hasSafetyPlan': bool(safety_plan),
            'safetyPlan': safety_plan,
            'rawAnalysis': analysis_output
        }
        
    except Exception as e:
        logger.error(f"Error formatting results: {e}")
        return {
            'riskLevel': 'low',
            'riskScore': 0,
            'primaryConcerns': [],
            'allPatterns': [],
            'riskStage': 'unknown',
            'emotionalTones': [],
            'darvoScore': 0.0,
            'personalizedRecommendations': ['Consider speaking with a counselor about your relationship concerns'],
            'hasSafetyPlan': False,
            'safetyPlan': '',
            'rawAnalysis': analysis_output
        }

def get_pattern_description(pattern_name):
    """Get human-readable descriptions for patterns"""
    descriptions = {
        'control': 'Attempts to manage your behavior, decisions, or daily activities',
        'gaslighting': 'Making you question your memory, perception, or reality',
        'dismissiveness': 'Minimizing or invalidating your feelings and experiences',
        'guilt tripping': 'Making you feel guilty to influence your behavior',
        'blame shifting': 'Placing responsibility for their actions onto you',
        'projection': 'Accusing you of behaviors they themselves exhibit',
        'insults': 'Name-calling or personal attacks intended to hurt',
        'contradictory statements': 'Saying things that conflict with previous statements',
        'obscure language': 'Using vague or confusing language to avoid accountability',
        'veiled threats': 'Indirect threats or intimidating language',
        'stalking language': 'Monitoring, tracking, or obsessive behaviors',
        'false concern': 'Expressing fake worry to manipulate or control',
        'false equivalence': 'Comparing incomparable situations to justify behavior',
        'future faking': 'Making promises about future behavior that are unlikely to be kept'
    }
    return descriptions.get(pattern_name.lower(), 'Concerning communication pattern detected')

def generate_personalized_recommendations(abuse_score, patterns, safety_plan):
    """Generate recommendations based on specific findings"""
    recommendations = []
    
    # Base recommendations
    if abuse_score >= 70:
        recommendations.extend([
            'Document these conversations with dates and times',
            'Reach out to a trusted friend or family member about your concerns',
            'Consider contacting the National Domestic Violence Hotline for guidance'
        ])
    elif abuse_score >= 40:
        recommendations.extend([
            'Keep a private journal of concerning interactions',
            'Talk to someone you trust about these communication patterns',
            'Consider counseling to explore healthy relationship dynamics'
        ])
    else:
        recommendations.extend([
            'Continue monitoring communication patterns that concern you',
            'Consider discussing communication styles with your partner when you feel safe to do so'
        ])
    
    # Pattern-specific recommendations
    pattern_names = [p['name'].lower() for p in patterns]
    
    if 'control' in pattern_names:
        recommendations.append('Maintain your independence and decision-making autonomy')
    
    if 'gaslighting' in pattern_names:
        recommendations.append('Trust your memory and perceptions - consider keeping notes')
    
    if any(p in pattern_names for p in ['stalking language', 'veiled threats']):
        recommendations.append('Vary your routines and inform trusted people of your whereabouts')
    
    if safety_plan:
        recommendations.append('Review your personalized safety plan regularly')
    
    return recommendations[:4]  # Limit to 4 recommendations

def extract_risk_stage(analysis_output):
    """Extract risk stage from analysis output"""
    if 'Tension-Building' in analysis_output:
        return 'tension-building'
    elif 'Escalation' in analysis_output:
        return 'escalation'
    elif 'Reconciliation' in analysis_output:
        return 'reconciliation'
    elif 'Honeymoon' in analysis_output:
        return 'honeymoon'
    else:
        return 'unknown'

def analyze_composite_with_ui_format(msg1, msg2, msg3, *answers_and_none):
    """
    Your existing analysis function, but returns formatted data for the new UI
    """
    # Run your existing analysis
    analysis_output, timeline_image, safety_plan = analyze_composite(msg1, msg2, msg3, *answers_and_none)
    
    # Format for new UI
    structured_results = format_results_for_new_ui(analysis_output, timeline_image, safety_plan)
    
    # Return as JSON string for the new UI to parse
    return json.dumps(structured_results), timeline_image, safety_plan





def create_mobile_friendly_interface():
    """Create a responsive interface that works well on both mobile and desktop with full functionality"""
    
    css = """
    /* Base responsive layout */
    .gradio-container {
        max-width: 100% !important;
        padding: 12px !important;
    }
    
    /* Desktop: side-by-side columns */
    @media (min-width: 1024px) {
        .desktop-row {
            display: flex !important;
            gap: 20px !important;
        }
        
        .desktop-col-messages {
            flex: 2 !important;
            min-width: 400px !important;
        }
        
        .desktop-col-checklist {
            flex: 1 !important;
            min-width: 300px !important;
        }
        
        .desktop-col-results {
            flex: 2 !important;
            min-width: 400px !important;
        }
        
        .mobile-only {
            display: none !important;
        }
        
        .mobile-expandable-btn {
            display: none !important;
        }
    }
    
    /* Mobile/Tablet: stack everything */
    @media (max-width: 1023px) {
        .gradio-row {
            flex-direction: column !important;
        }
        
        .gradio-column {
            width: 100% !important;
            margin-bottom: 20px !important;
        }
        
        .desktop-only {
            display: none !important;
        }
        
        /* Mobile expandable sections */
        .mobile-expandable-content {
            display: none;
        }
        
        .mobile-expandable-content.show {
            display: block;
        }
    }
    
    /* Button styling */
    .gradio-button {
        margin-bottom: 8px !important;
    }
    
    @media (max-width: 1023px) {
        .gradio-button {
            width: 100% !important;
            padding: 16px !important;
            font-size: 16px !important;
        }
        
        .mobile-expand-btn {
            background: #f9fafb !important;
            border: 1px solid #e5e7eb !important;
            color: #374151 !important;
            padding: 12px 16px !important;
            margin: 8px 0 !important;
            border-radius: 8px !important;
            font-weight: 500 !important;
        }
        
        .mobile-expand-btn:hover {
            background: #f3f4f6 !important;
        }
    }
    
    /* Results styling */
    .risk-low { border-left: 4px solid #10b981; background: #f0fdf4; }
    .risk-moderate { border-left: 4px solid #f59e0b; background: #fffbeb; }
    .risk-high { border-left: 4px solid #f97316; background: #fff7ed; }
    .risk-critical { border-left: 4px solid #ef4444; background: #fef2f2; }
    
    /* Clean group styling */
    .gradio-group {
        border: none !important;
        background: none !important;
        padding: 0 !important;
        margin: 0 !important;
        box-shadow: none !important;
    }
    
    /* Force readable text colors */
    .gradio-html * {
        color: #1f2937 !important;
    }
    
    .gradio-html p, .gradio-html div, .gradio-html span, .gradio-html li, .gradio-html ul, .gradio-html h1, .gradio-html h2, .gradio-html h3, .gradio-html h4 {
        color: #1f2937 !important;
    }
    
    /* Form spacing */
    .gradio-textbox {
        margin-bottom: 12px !important;
    }
    
    .gradio-checkbox {
        margin-bottom: 6px !important;
        font-size: 14px !important;
    }
    
    /* Compact checklist */
    .compact-checklist .gradio-checkbox {
        margin-bottom: 4px !important;
    }
    
    /* Specific overrides for safety plan and analysis displays */
    .gradio-html pre {
        color: #1f2937 !important;
        background: #f9fafb !important;
        padding: 12px !important;
        border-radius: 8px !important;
    }
    """
    
    with gr.Blocks(css=css, title="Relationship Pattern Analyzer") as demo:
        gr.HTML("""
        <div style="text-align: center; padding: 30px 20px;">
            <h1 style="font-size: 2.5rem; font-weight: bold; color: #1f2937; margin-bottom: 16px;">
                Relationship Pattern Analyzer
            </h1>
            <p style="font-size: 1.25rem; color: #6b7280; max-width: 600px; margin: 0 auto;">
                Share messages that concern you, and we'll help you understand what patterns might be present.
            </p>
        </div>
        """)
        
        with gr.Tab("Analyze Messages"):
            # Privacy notice
            gr.HTML("""
            <div style="background: #1e40af; border-radius: 12px; padding: 24px; margin-bottom: 24px; width: 100%; box-shadow: 0 4px 12px rgba(30, 64, 175, 0.3);">
                <div style="display: flex; align-items: center; margin-bottom: 12px;">
                    <span style="font-size: 1.5rem; margin-right: 12px;">πŸ›‘οΈ</span>
                    <h3 style="color: white; margin: 0; font-size: 1.25rem; font-weight: 600;">Your Privacy Matters</h3>
                </div>
                <p style="color: #e0e7ff; margin: 0; font-size: 1rem; line-height: 1.5;">
                    Your messages are analyzed locally and are not stored or shared. 
                    This tool is for educational purposes and not a substitute for professional counseling.
                </p>
            </div>
            """)
            
            # Desktop layout
            with gr.Row(elem_classes=["desktop-row", "desktop-only"], equal_height=True):
                # Messages column
                with gr.Column(elem_classes=["desktop-col-messages"], scale=4, min_width=400):
                    gr.HTML("<h3 style='margin-bottom: 16px;'>Share Your Messages</h3>")
                    gr.HTML("""
                    <p style="color: #6b7280; margin-bottom: 20px;">
                        Enter up to three messages that made you feel uncomfortable, confused, or concerned. 
                        For the most accurate analysis, include messages from recent emotionally intense conversations.
                    </p>
                    """)
                    
                    msg1_desktop = gr.Textbox(
                        label="Message 1 *",
                        placeholder="Enter the message here...",
                        lines=4
                    )
                    msg2_desktop = gr.Textbox(
                        label="Message 2 (optional)",
                        placeholder="Enter the message here...",
                        lines=4
                    )
                    msg3_desktop = gr.Textbox(
                        label="Message 3 (optional)",
                        placeholder="Enter the message here...",
                        lines=4
                    )
                
                # Checklist column
                with gr.Column(elem_classes=["desktop-col-checklist"], scale=3, min_width=300):
                    gr.HTML("<h3 style='margin-bottom: 16px;'>Safety Checklist</h3>")
                    gr.HTML("""
                    <p style="color: #6b7280; margin-bottom: 20px; font-size: 14px;">
                        Optional but recommended. Check any that apply to your situation:
                    </p>
                    """)
                    
                    checklist_items_desktop = []
                    with gr.Column(elem_classes=["compact-checklist"]):
                        for question, weight in ESCALATION_QUESTIONS:
                            checklist_items_desktop.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"]))
                        
                        none_selected_desktop = gr.Checkbox(
                            label="None of the above apply to my situation",
                            elem_classes=["none-checkbox"]
                        )
                    
                    analyze_btn_desktop = gr.Button(
                        "Analyze Messages",
                        variant="primary",
                        size="lg"
                    )
                
                # Results column
                with gr.Column(elem_classes=["desktop-col-results"], scale=5, min_width=400):
                    gr.HTML("<h3 style='margin-bottom: 16px;'>Analysis Results</h3>")
                    gr.HTML("""
                    <p style="color: #6b7280; margin-bottom: 20px; font-style: italic;">
                        Results will appear here after analysis...
                    </p>
                    """)
                    
                    # Desktop results components
                    results_json_desktop = gr.JSON(visible=False)
                    risk_summary_desktop = gr.HTML(visible=False)
                    concerns_display_desktop = gr.HTML(visible=False)
                    additional_metrics_desktop = gr.HTML(visible=False)
                    recommendations_display_desktop = gr.HTML(visible=False)
                    
                    with gr.Row(visible=False) as action_buttons_desktop:
                        safety_plan_btn_desktop = gr.Button("πŸ›‘οΈ Get Safety Plan", variant="secondary")
                        full_analysis_btn_desktop = gr.Button("πŸ“Š Show Full Analysis", variant="secondary")
                        download_btn_desktop = gr.Button("πŸ“„ Download Report", variant="secondary")
                    
                    full_analysis_display_desktop = gr.HTML(visible=False)
                    timeline_chart_desktop = gr.Image(visible=False, label="Pattern Timeline")
                    download_file_desktop = gr.File(label="Download Report", visible=False)
            
            # Mobile layout
            with gr.Column(elem_classes=["mobile-only"]):
                # Message input - always visible
                gr.HTML("<h3>πŸ“ Share Your Messages</h3>")
                gr.HTML("""
                <p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;">
                    Enter messages that made you uncomfortable or concerned:
                </p>
                """)
                
                msg1_mobile = gr.Textbox(
                    label="Message 1 (required)",
                    placeholder="Enter the concerning message here...",
                    lines=3
                )
                
                # Button to show additional messages
                show_more_msgs_btn = gr.Button(
                    "βž• Add More Messages (Optional)",
                    elem_classes=["mobile-expand-btn", "mobile-expandable-btn"],
                    variant="secondary"
                )
                
                # Additional messages (hidden by default)
                with gr.Column(visible=False) as additional_messages_mobile:
                    msg2_mobile = gr.Textbox(
                        label="Message 2 (optional)",
                        placeholder="Enter another message...",
                        lines=3
                    )
                    msg3_mobile = gr.Textbox(
                        label="Message 3 (optional)",
                        placeholder="Enter a third message...",
                        lines=3
                    )
                
                # Button to show safety checklist
                show_checklist_btn = gr.Button(
                    "⚠️ Safety Checklist (Optional)",
                    elem_classes=["mobile-expand-btn", "mobile-expandable-btn"],
                    variant="secondary"
                )
                
                # Safety checklist (hidden by default)
                with gr.Column(visible=False) as safety_checklist_mobile:
                    gr.HTML("""
                    <p style="color: #6b7280; margin-bottom: 16px; font-size: 14px;">
                        Check any that apply to improve analysis accuracy:
                    </p>
                    """)
                    
                    checklist_items_mobile = []
                    for question, weight in ESCALATION_QUESTIONS:
                        checklist_items_mobile.append(gr.Checkbox(label=question, elem_classes=["compact-checkbox"]))
                    
                    none_selected_mobile = gr.Checkbox(
                        label="None of the above apply",
                        elem_classes=["none-checkbox"]
                    )
                
                # Analysis button
                analyze_btn_mobile = gr.Button(
                    "πŸ” Analyze Messages",
                    variant="primary",
                    size="lg"
                )
                
                # Mobile results components
                results_json_mobile = gr.JSON(visible=False)
                risk_summary_mobile = gr.HTML(visible=False)
                concerns_display_mobile = gr.HTML(visible=False)
                additional_metrics_mobile = gr.HTML(visible=False)
                recommendations_display_mobile = gr.HTML(visible=False)
                
                with gr.Row(visible=False) as action_buttons_mobile:
                    safety_plan_btn_mobile = gr.Button("πŸ›‘οΈ Safety Plan", variant="secondary")
                    full_analysis_btn_mobile = gr.Button("πŸ“Š Full Analysis", variant="secondary")
                    download_btn_mobile = gr.Button("πŸ“„ Download", variant="secondary")
                
                full_analysis_display_mobile = gr.HTML(visible=False)
                timeline_chart_mobile = gr.Image(visible=False, label="Pattern Timeline")
                download_file_mobile = gr.File(label="Download Report", visible=False)
        
        with gr.Tab("Safety Resources"):
            gr.HTML("""
            <div style="background: #dcfce7; border-radius: 12px; padding: 24px; margin-bottom: 20px;">
                <h2 style="color: #166534; margin-bottom: 16px;">πŸ›‘οΈ Safety Planning</h2>
                <p style="color: #166534;">
                    If you're concerned about your safety, here are immediate resources and steps you can take.
                </p>
            </div>
            """)
            
            with gr.Row():
                with gr.Column():
                    gr.HTML("""
                    <div class="risk-card" style="background: #fef2f2; border-left: 4px solid #ef4444;">
                        <h3 style="color: #991b1b;">🚨 Emergency Resources</h3>
                        <div style="margin: 16px 0;">
                            <p><strong>911</strong> - For immediate danger</p>
                            <p><strong>1-800-799-7233</strong> - National DV Hotline (24/7)</p>
                            <p><strong>Text START to 88788</strong> - Crisis Text Line</p>
                            <p><strong>988</strong> - National Suicide Prevention Lifeline</p>
                        </div>
                    </div>
                    """)
                
                with gr.Column():
                    gr.HTML("""
                    <div class="risk-card" style="background: #f0fdf4; border-left: 4px solid #10b981;">
                        <h3 style="color: #065f46;">πŸ’š Support Resources</h3>
                        <div style="margin: 16px 0;">
                            <p><strong>thehotline.org</strong> - Online chat support</p>
                            <p><strong>Local counseling services</strong> - Professional support</p>
                            <p><strong>Trusted friends/family</strong> - Personal support network</p>
                            <p><strong>Legal advocacy</strong> - Know your rights</p>
                        </div>
                    </div>
                    """)
            
            safety_plan_display = gr.HTML()
        
        # Mobile expandable button handlers
        def toggle_additional_messages(current_visibility):
            return gr.update(visible=not current_visibility)
        
        def toggle_safety_checklist(current_visibility):
            return gr.update(visible=not current_visibility)
        
        show_more_msgs_btn.click(
            toggle_additional_messages,
            inputs=[additional_messages_mobile],
            outputs=[additional_messages_mobile]
        )
        
        show_checklist_btn.click(
            toggle_safety_checklist,
            inputs=[safety_checklist_mobile],
            outputs=[safety_checklist_mobile]
        )
        
        # Full analysis processing function
        def process_analysis(*inputs):
            """Process the analysis and format for display - FULL FUNCTIONALITY"""
            msgs = inputs[:3]
            checklist_responses = inputs[3:]
            
            # Run analysis
            analysis_result, timeline_img, safety_plan = analyze_composite_with_ui_format(*inputs)
            
            # Parse results
            try:
                results = json.loads(analysis_result)
            except:
                results = {'riskLevel': 'low', 'riskScore': 0, 'primaryConcerns': [], 'emotionalTones': [], 'darvoScore': 0, 'personalizedRecommendations': []}
            
            # Format risk summary
            risk_config = {
                'low': {'color': '#10b981', 'bg': '#f0fdf4', 'icon': '🟒', 'label': 'Low Risk'},
                'moderate': {'color': '#f59e0b', 'bg': '#fffbeb', 'icon': '🟑', 'label': 'Moderate Concern'},
                'high': {'color': '#f97316', 'bg': '#fff7ed', 'icon': '🟠', 'label': 'High Risk'},
                'critical': {'color': '#ef4444', 'bg': '#fef2f2', 'icon': 'πŸ”΄', 'label': 'Critical Risk'}
            }
            
            config = risk_config.get(results['riskLevel'], risk_config['low'])
            
            # Create pattern summary for display with explicit styling
            pattern_summary = ""
            if results.get('primaryConcerns'):
                # Filter out the "escalation potential" concern when displaying in summary
                actual_concerns = [concern for concern in results['primaryConcerns'] 
                                 if 'escalation potential' not in concern['name'].lower()]
                
                if actual_concerns:
                    pattern_names = [concern['name'] for concern in actual_concerns]
                    if len(pattern_names) == 1:
                        pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> pattern detected</span>"
                    elif len(pattern_names) == 2:
                        pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{pattern_names[0]}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[1]}</strong> patterns detected</span>"
                    else:
                        pattern_summary = f"<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>{', '.join(pattern_names[:-1])}</strong> and <strong style='color: #1f2937 !important;'>{pattern_names[-1]}</strong> patterns detected</span>"
                else:
                    # Only escalation potential was found (incomplete checklist)
                    pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>"
            else:
                pattern_summary = "<span style='color: #1f2937 !important;'><strong style='color: #1f2937 !important;'>Concerning communication patterns</strong> detected</span>"
            
            risk_html = f"""
            <div style="background: {config['bg']}; border-left: 4px solid {config['color']}; border-radius: 12px; padding: 24px; margin-bottom: 20px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
                <div style="display: flex; align-items: center; margin-bottom: 16px;">
                    <span style="font-size: 2rem; margin-right: 12px;">{config['icon']}</span>
                    <div>
                        <h2 style="font-size: 1.5rem; font-weight: bold; color: #1f2937; margin: 0;">{config['label']}</h2>
                        <p style="color: #374151; margin: 0; font-weight: 500;">Based on the messages you shared</p>
                    </div>
                </div>
                <div style="background: rgba(0,0,0,0.05); border-radius: 8px; padding: 16px;">
                    <div style="color: #1f2937 !important; margin: 0 0 8px 0; font-size: 1rem;">
                        <span style="color: #1f2937 !important;">{pattern_summary}</span>
                    </div>
                    <p style="color: #374151 !important; margin: 0; font-weight: 600;">
                        Risk Score: {results['riskScore']}%
                    </p>
                </div>
            </div>
            """
            
            # Format concerns
            concerns_html = "<h3 style='margin-top: 24px;'>Key Concerns Found</h3>"
            if results.get('primaryConcerns'):
                for concern in results['primaryConcerns']:
                    severity_colors = {
                        'high': '#fee2e2',
                        'moderate': '#fef3c7', 
                        'low': '#dbeafe'
                    }
                    bg_color = severity_colors.get(concern.get('severity', 'low'), '#f3f4f6')
                    
                    concerns_html += f"""
                    <div style="background: {bg_color}; border-radius: 8px; padding: 16px; margin: 8px 0;">
                        <h4 style="margin: 0 0 8px 0; color: #1f2937;">{concern.get('name', 'Unknown Concern')}</h4>
                        <p style="margin: 0; color: #6b7280;">{concern.get('description', 'No description available')}</p>
                    </div>
                    """
            else:
                concerns_html += "<p style='color: #6b7280; font-style: italic;'>No specific concerns identified in the messages.</p>"
            
            # Additional Metrics Section
            metrics_html = "<h3 style='margin-top: 24px;'>Additional Analysis</h3>"
            
            # DARVO Score
            darvo_score = results.get('darvoScore', 0)
            if darvo_score > 0.25:
                darvo_level = "High" if darvo_score >= 0.65 else "Moderate"
                darvo_color = "#fee2e2" if darvo_score >= 0.65 else "#fef3c7"
                metrics_html += f"""
                <div style="background: {darvo_color}; border-radius: 8px; padding: 16px; margin: 8px 0;">
                    <h4 style="margin: 0 0 8px 0; color: #1f2937;">🎭 DARVO Score: {darvo_score:.3f} ({darvo_level})</h4>
                    <p style="margin: 0; color: #6b7280;">
                        DARVO (Deny, Attack, Reverse Victim & Offender) indicates potential narrative manipulation where the speaker may be deflecting responsibility.
                    </p>
                </div>
                """
            
            # Emotional Tones
            emotional_tones = results.get('emotionalTones', [])
            if emotional_tones and any(tone != 'neutral' for tone in emotional_tones):
                metrics_html += f"""
                <div style="background: #f8fafc; border-radius: 8px; padding: 16px; margin: 8px 0;">
                    <h4 style="margin: 0 0 8px 0; color: #1f2937;">🎭 Emotional Tones Detected</h4>
                    <div style="margin: 8px 0;">
                """
                for i, tone in enumerate(emotional_tones):
                    if tone and tone != 'neutral':
                        metrics_html += f"""
                        <p style="margin: 4px 0; color: #6b7280;">β€’ Message {i+1}: <em>{tone}</em></p>
                        """
                metrics_html += """
                    </div>
                    <p style="margin: 8px 0 0 0; color: #6b7280; font-size: 14px;">
                        Emotional tone analysis helps identify underlying manipulation tactics or concerning emotional patterns.
                    </p>
                </div>
                """
            
            # Format recommendations
            rec_html = "<h3 style='margin-top: 24px;'>Personalized Recommendations</h3>"
            recommendations = results.get('personalizedRecommendations', [])
            for rec in recommendations:
                rec_html += f"""
                <div style="background: #f8fafc; border-left: 3px solid #3b82f6; border-radius: 8px; padding: 12px; margin: 8px 0;">
                    <p style="margin: 0; color: #374151;">β€’ {rec}</p>
                </div>
                """
            
            return (
                gr.update(value=analysis_result, visible=False),  # results_json
                gr.update(value=risk_html, visible=True),         # risk_summary
                gr.update(value=concerns_html, visible=True),     # concerns_display
                gr.update(value=metrics_html, visible=True),      # additional_metrics
                gr.update(value=rec_html, visible=True),          # recommendations_display
                gr.update(visible=True),                          # action_buttons
                gr.update(visible=False),                         # full_analysis_display
                gr.update(value=timeline_img, visible=True),      # timeline_chart
                gr.update(visible=False),                         # download_file
                gr.update(value=safety_plan)                      # safety_plan_display
            )
        
        def show_full_analysis(results_json_str):
            """Show the full technical analysis"""
            try:
                if not results_json_str:
                    return gr.update(value="<p>No analysis data available. Please run the analysis first.</p>", visible=True)
                
                # Handle both JSON string and dict inputs
                if isinstance(results_json_str, str):
                    results = json.loads(results_json_str)
                elif isinstance(results_json_str, dict):
                    results = results_json_str
                else:
                    return gr.update(value="<p>Invalid data format. Please run the analysis again.</p>", visible=True)
                
                # Create comprehensive full analysis display
                full_html = f"""
                <div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
                    <h3 style="color: #1f2937 !important;">πŸ“Š Complete Technical Analysis</h3>
                    
                    <div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <h4 style="color: #1f2937 !important;">πŸ“‹ Risk Assessment Summary</h4>
                        <p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Level:</strong> {results.get('riskLevel', 'Unknown').title()}</p>
                        <p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Score:</strong> {results.get('riskScore', 'N/A')}%</p>
                        <p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Risk Stage:</strong> {results.get('riskStage', 'Unknown').replace('-', ' ').title()}</p>
                    </div>
                    
                    <div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <h4 style="color: #1f2937 !important;">🎭 Behavioral Analysis</h4>
                        <p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">DARVO Score:</strong> {results.get('darvoScore', 0):.3f}</p>
                        <p style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Emotional Tones:</strong> {', '.join(results.get('emotionalTones', ['None detected']))}</p>
                    </div>
                    
                    <div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <h4 style="color: #1f2937 !important;">πŸ” Detected Patterns</h4>
                """
                
                if results.get('allPatterns'):
                    for pattern in results['allPatterns']:
                        severity_badge = {
                            'high': 'πŸ”΄',
                            'moderate': '🟑', 
                            'low': '🟒'
                        }.get(pattern.get('severity', 'low'), 'βšͺ')
                        
                        full_html += f"""
                        <div style="margin: 8px 0; padding: 8px; background: white; border-radius: 4px;">
                            <p style="margin: 0; color: #1f2937 !important;"><strong style="color: #1f2937 !important;">{severity_badge} {pattern.get('name', 'Unknown')}</strong></p>
                            <p style="margin: 4px 0 0 0; font-size: 14px; color: #6b7280 !important;">{pattern.get('description', 'No description available')}</p>
                        </div>
                        """
                else:
                    full_html += "<p style='color: #1f2937 !important;'>No specific patterns detected.</p>"
                
                full_html += """
                    </div>
                    
                    <div style="background: #f9fafb; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <h4 style="color: #1f2937 !important;">πŸ“ Complete Analysis Output</h4>
                        <div style="max-height: 400px; overflow-y: auto; background: white; padding: 12px; border-radius: 4px; font-family: monospace; font-size: 14px; white-space: pre-wrap; color: #1f2937 !important;">"""
                
                full_html += results.get('rawAnalysis', 'No detailed analysis available')
                
                full_html += """
                        </div>
                    </div>
                </div>
                """
                
                return gr.update(value=full_html, visible=True)
                
            except Exception as e:
                error_html = f"""
                <div style="background: #fee2e2; border-radius: 8px; padding: 16px; margin-top: 20px;">
                    <h4>❌ Error Loading Analysis</h4>
                    <p>Unable to parse analysis results: {str(e)}</p>
                    <p>Please try running the analysis again.</p>
                </div>
                """
                return gr.update(value=error_html, visible=True)
        
        def generate_report(results_json_str, timeline_img):
            """Generate a downloadable report with all analysis information"""
            import tempfile
            import os
            from datetime import datetime
            
            try:
                if not results_json_str:
                    return None
                
                # Handle both JSON string and dict inputs
                if isinstance(results_json_str, str):
                    results = json.loads(results_json_str)
                elif isinstance(results_json_str, dict):
                    results = results_json_str
                else:
                    return None
                current_date = datetime.now().strftime("%Y-%m-%d")
                current_time = datetime.now().strftime("%I:%M %p")
                
                # Create comprehensive report
                report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT
Generated: {current_date} at {current_time}

═══════════════════════════════════════════════════════════════════

EXECUTIVE SUMMARY
═══════════════════════════════════════════════════════════════════

Risk Level: {results.get('riskLevel', 'Unknown').upper()}
Risk Score: {results.get('riskScore', 'N/A')}%
Risk Stage: {results.get('riskStage', 'Unknown').replace('-', ' ').title()}

═══════════════════════════════════════════════════════════════════

DETECTED PATTERNS
═══════════════════════════════════════════════════════════════════"""
                
                # Add detected patterns
                if results.get('allPatterns'):
                    for pattern in results['allPatterns']:
                        severity_symbol = {
                            'high': 'πŸ”΄ HIGH',
                            'moderate': '🟑 MODERATE',
                            'low': '🟒 LOW'
                        }.get(pattern.get('severity', 'low'), 'βšͺ UNKNOWN')
                        
                        report += f"""

{severity_symbol} SEVERITY: {pattern.get('name', 'Unknown Pattern')}
Description: {pattern.get('description', 'No description available')}"""
                else:
                    report += "\n\nNo specific patterns detected in the analysis."
                
                # Add behavioral analysis
                report += f"""

═══════════════════════════════════════════════════════════════════

BEHAVIORAL ANALYSIS
═══════════════════════════════════════════════════════════════════

DARVO Score: {results.get('darvoScore', 0):.3f}"""
                
                darvo_score = results.get('darvoScore', 0)
                if darvo_score > 0.65:
                    report += "\nDARVO Level: HIGH - Strong indication of narrative manipulation"
                elif darvo_score > 0.25:
                    report += "\nDARVO Level: MODERATE - Some indication of narrative manipulation"
                else:
                    report += "\nDARVO Level: LOW - Limited indication of narrative manipulation"
                
                report += """\n
DARVO Definition: Deny, Attack, Reverse Victim & Offender - a manipulation 
tactic where the perpetrator denies wrongdoing, attacks the victim, and 
positions themselves as the victim.

Emotional Tone Analysis:"""
                
                # Add emotional tones
                emotional_tones = results.get('emotionalTones', [])
                if emotional_tones:
                    for i, tone in enumerate(emotional_tones):
                        if tone and tone != 'neutral':
                            report += f"\nMessage {i+1}: {tone}"
                    
                    if not any(tone != 'neutral' for tone in emotional_tones):
                        report += "\nNo concerning emotional tones detected."
                else:
                    report += "\nNo emotional tone data available."
                
                # Add recommendations
                report += f"""

═══════════════════════════════════════════════════════════════════

PERSONALIZED RECOMMENDATIONS
═══════════════════════════════════════════════════════════════════"""
                
                recommendations = results.get('personalizedRecommendations', [])
                for i, rec in enumerate(recommendations, 1):
                    report += f"\n{i}. {rec}"
                
                # Add safety planning
                safety_plan = results.get('safetyPlan', '')
                if safety_plan:
                    report += f"""

═══════════════════════════════════════════════════════════════════

SAFETY PLANNING
═══════════════════════════════════════════════════════════════════

{safety_plan}"""
                
                # Add emergency resources
                report += """

═══════════════════════════════════════════════════════════════════

EMERGENCY RESOURCES
═══════════════════════════════════════════════════════════════════

🚨 IMMEDIATE EMERGENCY: Call 911

24/7 CRISIS SUPPORT:
β€’ National Domestic Violence Hotline: 1-800-799-7233
β€’ Crisis Text Line: Text START to 88788
β€’ National Suicide Prevention Lifeline: 988
β€’ Online Chat Support: thehotline.org

ADDITIONAL SUPPORT:
β€’ Local counseling services
β€’ Legal advocacy organizations
β€’ Trusted friends and family
β€’ Employee assistance programs (if available)

═══════════════════════════════════════════════════════════════════

IMPORTANT DISCLAIMERS
═══════════════════════════════════════════════════════════════════

β€’ This analysis is for educational purposes only
β€’ It is not a substitute for professional counseling or legal advice
β€’ Trust your instincts about your safety
β€’ Consider sharing this report with a trusted counselor or advocate
β€’ Your messages were analyzed locally and not stored or shared

Report Generated by: Relationship Pattern Analyzer
Analysis Date: {current_date}
Report Version: 1.0

═══════════════════════════════════════════════════════════════════"""
                
                # Create temporary file
                temp_file = tempfile.NamedTemporaryFile(
                    mode='w', 
                    suffix='.txt', 
                    prefix=f'relationship_analysis_report_{current_date.replace("-", "_")}_',
                    delete=False,
                    encoding='utf-8'
                )
                
                temp_file.write(report)
                temp_file.close()
                
                return temp_file.name
                
            except Exception as e:
                # Create error report
                error_report = f"""RELATIONSHIP PATTERN ANALYSIS REPORT - ERROR
Generated: {datetime.now().strftime("%Y-%m-%d at %I:%M %p")}

An error occurred while generating the full report: {str(e)}

Please try running the analysis again or contact support if the issue persists."""
                
                temp_file = tempfile.NamedTemporaryFile(
                    mode='w', 
                    suffix='.txt', 
                    prefix='error_report_',
                    delete=False,
                    encoding='utf-8'
                )
                temp_file.write(error_report)
                temp_file.close()
                
                return temp_file.name
        
        def show_safety_plan_content(safety_plan_content):
            """Display the personalized safety plan"""
            if safety_plan_content:
                safety_plan_html = f"""
                <div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
                    <h3 style="color: #1f2937 !important;">πŸ›‘οΈ Your Personalized Safety Plan</h3>
                    <div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <div style="white-space: pre-wrap; font-family: inherit; font-size: 14px; line-height: 1.5; color: #1f2937 !important;">{safety_plan_content}</div>
                    </div>
                </div>
                """
                return gr.update(value=safety_plan_html, visible=True)
            else:
                # Fallback to general safety information
                general_safety = """
                <div style="background: white; border-radius: 12px; padding: 24px; border: 1px solid #e5e7eb; margin-top: 20px;">
                    <h3 style="color: #1f2937 !important;">πŸ›‘οΈ Safety Planning</h3>
                    <div style="background: #f0fdf4; border-radius: 8px; padding: 16px; margin: 16px 0;">
                        <h4 style="color: #1f2937 !important;">Immediate Safety Steps:</h4>
                        <ul style="color: #1f2937 !important;">
                            <li style="color: #1f2937 !important;">Trust your instincts - if something feels wrong, it probably is</li>
                            <li style="color: #1f2937 !important;">Document concerning incidents with dates and details</li>
                            <li style="color: #1f2937 !important;">Identify safe people you can reach out to</li>
                            <li style="color: #1f2937 !important;">Keep important documents and emergency contacts accessible</li>
                            <li style="color: #1f2937 !important;">Consider speaking with a counselor or trusted friend</li>
                        </ul>
                        <h4 style="color: #1f2937 !important;">Emergency Resources:</h4>
                        <ul style="color: #1f2937 !important;">
                            <li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">911</strong> - For immediate danger</li>
                            <li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">1-800-799-7233</strong> - National DV Hotline (24/7)</li>
                            <li style="color: #1f2937 !important;"><strong style="color: #1f2937 !important;">Text START to 88788</strong> - Crisis Text Line</li>
                        </ul>
                    </div>
                </div>
                """
                return gr.update(value=general_safety, visible=True)
        
        # Connect desktop event handlers
        analyze_btn_desktop.click(
            process_analysis,
            inputs=[msg1_desktop, msg2_desktop, msg3_desktop] + checklist_items_desktop + [none_selected_desktop],
            outputs=[
                results_json_desktop, risk_summary_desktop, concerns_display_desktop, 
                additional_metrics_desktop, recommendations_display_desktop, action_buttons_desktop, 
                full_analysis_display_desktop, timeline_chart_desktop, download_file_desktop, safety_plan_display
            ]
        )
        
        full_analysis_btn_desktop.click(
            show_full_analysis,
            inputs=[results_json_desktop],
            outputs=[full_analysis_display_desktop]
        )
        
        download_btn_desktop.click(
            generate_report,
            inputs=[results_json_desktop, timeline_chart_desktop],
            outputs=[download_file_desktop]
        ).then(
            lambda: gr.update(visible=True),
            outputs=[download_file_desktop]
        )
        
        safety_plan_btn_desktop.click(
            show_safety_plan_content,
            inputs=[safety_plan_display],
            outputs=[full_analysis_display_desktop]
        )
        
        # Connect mobile event handlers
        analyze_btn_mobile.click(
            process_analysis,
            inputs=[msg1_mobile, msg2_mobile, msg3_mobile] + checklist_items_mobile + [none_selected_mobile],
            outputs=[
                results_json_mobile, risk_summary_mobile, concerns_display_mobile,
                additional_metrics_mobile, recommendations_display_mobile, action_buttons_mobile,
                full_analysis_display_mobile, timeline_chart_mobile, download_file_mobile, safety_plan_display
            ]
        )
        
        full_analysis_btn_mobile.click(
            show_full_analysis,
            inputs=[results_json_mobile],
            outputs=[full_analysis_display_mobile]
        )
        
        download_btn_mobile.click(
            generate_report,
            inputs=[results_json_mobile, timeline_chart_mobile],
            outputs=[download_file_mobile]
        ).then(
            lambda: gr.update(visible=True),
            outputs=[download_file_mobile]
        )
        
        safety_plan_btn_mobile.click(
            show_safety_plan_content,
            inputs=[safety_plan_display],
            outputs=[full_analysis_display_mobile]
        )
    
    return demo
    
if __name__ == "__main__":
    try:
        print("πŸ“± Creating interface...")
        demo = create_mobile_friendly_interface()
        print("βœ… Interface created successfully")
        
        print("🌐 Launching demo...")
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
        print("πŸŽ‰ App launched!")
    except Exception as e:
        print(f"❌ Error: {e}")
        import traceback
        traceback.print_exc()
        raise