Spaces:
Running
Running
File size: 30,891 Bytes
d6e219c f1948f2 e46fbeb a0d733c 1ef0cee f81397d be511bb 0a6e7ae f81397d 1ef0cee 0a6e7ae e46fbeb 0a6e7ae 5888ec6 e46fbeb 5888ec6 0a6e7ae d270769 e46fbeb 5888ec6 0a6e7ae e46fbeb d80ec7b 0a6e7ae 6cdcb5b e1ba4f8 6cdcb5b e46fbeb 0a6e7ae cfdfbb0 0a6e7ae 184eae8 44ac58a 0db7070 ba18699 0db7070 d334e9c 0db7070 0a6e7ae cfdfbb0 0a6e7ae cfdfbb0 5ee6178 cfdfbb0 0a6e7ae fb0821c 0a6e7ae b88ad9d 0a6e7ae 4d855c4 b5bf202 4d855c4 4eeeb7e 4d855c4 b5bf202 4d855c4 4eeeb7e 4d855c4 e9dc9ea 4c24baa 6a4d82f 4c24baa adff1b6 4c24baa 0a6e7ae 2eb2ad0 8169a27 6e056de c5ab02a 6e056de c5ab02a 6e056de 0a6e7ae 6e056de 0a6e7ae c5ab02a 0a6e7ae c5ab02a 8169a27 0a6e7ae 8169a27 0a6e7ae c5ab02a 0a6e7ae 0db7070 0a6e7ae 0db7070 0a6e7ae b405143 0a6e7ae 5ee6178 0a6e7ae e46fbeb 0a6e7ae 44220fe 977855e cdb869a d56f3b3 c127ba6 d56f3b3 cdb869a d56f3b3 8cbdd57 90d7e35 cdb869a 44220fe 0a6e7ae e46fbeb 96f5bc2 a0d733c 0a6e7ae d4713b6 0a6e7ae d374438 0a6e7ae d80ec7b 0a6e7ae d56f3b3 0a6e7ae d374438 0a6e7ae d56f3b3 0a6e7ae d56f3b3 0a6e7ae d56f3b3 509e003 0a6e7ae d56f3b3 0a6e7ae 0b7d696 e46fbeb b40c9cf a0d733c 68c555d cb8a766 e46fbeb 2376828 b40c9cf 7c6950a e46fbeb 135755d 8169a27 135755d 8169a27 7c6950a 7c5f796 8169a27 7c5f796 7c6950a 8169a27 7c6950a 68c555d 7c6950a 8169a27 7c6950a f020cca 577f266 0b7d696 e46fbeb 967ce44 e848448 8169a27 4e77d52 967ce44 8169a27 b40c9cf e46fbeb b40c9cf e46fbeb 8169a27 c4bd45f 8169a27 2376828 ae867ed 8169a27 b90535a 8169a27 b90535a 8169a27 e46fbeb b40c9cf 49de108 f76b87b 0a6e7ae e46fbeb 0a6e7ae e46fbeb 0a6e7ae 2376828 e46fbeb 2376828 e46fbeb 2376828 96f5bc2 2376828 e46fbeb d457a0a e46fbeb 2376828 96f5bc2 2376828 6f5f8ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import gradio as gr
import torch
import numpy as np
from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from transformers import pipeline as hf_pipeline # prevent name collision with gradio pipeline
def get_emotion_profile(text):
emotions = emotion_pipeline(text)
if isinstance(emotions, list) and isinstance(emotions[0], list):
emotions = emotions[0]
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
# Emotion model (no retraining needed)
emotion_pipeline = hf_pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=None,
truncation=True
)
# --- Timeline Visualization Function ---
def generate_abuse_score_chart(dates, scores, labels):
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
import re
# Determine if all entries are valid dates
if all(re.match(r"\d{4}-\d{2}-\d{2}", d) for d in dates):
parsed_x = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
x_labels = [d.strftime("%Y-%m-%d") for d in parsed_x]
else:
parsed_x = list(range(1, len(dates) + 1))
x_labels = [f"Message {i+1}" for i in range(len(dates))]
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(parsed_x, scores, marker='o', linestyle='-', color='darkred', linewidth=2)
for x, y in zip(parsed_x, scores):
ax.text(x, y + 2, f"{int(y)}%", ha='center', fontsize=8, color='black')
ax.set_xticks(parsed_x)
ax.set_xticklabels(x_labels)
ax.set_xlabel("") # No axis label
ax.set_ylabel("Abuse Score (%)")
ax.set_ylim(0, 105)
ax.grid(True)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
# --- Abuse Model ---
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"recovery", "control", "gaslighting", "dismissiveness", "blame shifting",
"coercion", "aggression", "nonabusive", "deflection", "projection", "insults"
]
THRESHOLDS = {
"recovery": 0.999,
"control": 0.100,
"gaslighting": 0.410,
"dismissiveness": 0.867,
"blame shifting": 0.116,
"coercion": 0.100,
"aggression": 0.02,
"nonabusive": 0.100,
"deflection": 0.100,
"projection": 0.100,
"insults": 0.100
}
PATTERN_WEIGHTS = {
"gaslighting": 1.5,
"control": 1.2,
"dismissiveness": 0.7,
"blame shifting": 0.5,
"insults": 1.4,
"projection": 1.2,
"recovery": 1.1,
"coercion": 1.3,
"aggression": 2.2,
"nonabusive": 0.1,
"deflection": 0.4
}
RISK_STAGE_LABELS = {
1: "🌀 Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "🔥 Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attempt—apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
DARVO_PATTERNS = [
"blame shifting", # "You're the reason this happens"
"projection", # "You're the abusive one"
"deflection", # "This isn't about that"
"dismissiveness", # "You're overreacting"
"insults", # Personal attacks that redirect attention
"aggression", # Escalates tone to destabilize
"recovery phase", # Sudden affection following aggression
"contradictory statements" # “I never said that” immediately followed by a version of what they said
]
DARVO_MOTIFS = [
"I never said that.", "You’re imagining things.", "That never happened.",
"You’re making a big deal out of nothing.", "It was just a joke.", "You’re too sensitive.",
"I don’t know what you’re talking about.", "You’re overreacting.", "I didn’t mean it that way.",
"You’re twisting my words.", "You’re remembering it wrong.", "You’re always looking for something to complain about.",
"You’re just trying to start a fight.", "I was only trying to help.", "You’re making things up.",
"You’re blowing this out of proportion.", "You’re being paranoid.", "You’re too emotional.",
"You’re always so dramatic.", "You’re just trying to make me look bad.",
"You’re crazy.", "You’re the one with the problem.", "You’re always so negative.",
"You’re just trying to control me.", "You’re the abusive one.", "You’re trying to ruin my life.",
"You’re just jealous.", "You’re the one who needs help.", "You’re always playing the victim.",
"You’re the one causing all the problems.", "You’re just trying to make me feel guilty.",
"You’re the one who can’t let go of the past.", "You’re the one who’s always angry.",
"You’re the one who’s always complaining.", "You’re the one who’s always starting arguments.",
"You’re the one who’s always making things worse.", "You’re the one who’s always making me feel bad.",
"You’re the one who’s always making me look like the bad guy.",
"You’re the one who’s always making me feel like a failure.",
"You’re the one who’s always making me feel like I’m not good enough.",
"I can’t believe you’re doing this to me.", "You’re hurting me.",
"You’re making me feel like a terrible person.", "You’re always blaming me for everything.",
"You’re the one who’s abusive.", "You’re the one who’s controlling.", "You’re the one who’s manipulative.",
"You’re the one who’s toxic.", "You’re the one who’s gaslighting me.",
"You’re the one who’s always putting me down.", "You’re the one who’s always making me feel bad.",
"You’re the one who’s always making me feel like I’m not good enough.",
"You’re the one who’s always making me feel like I’m the problem.",
"You’re the one who’s always making me feel like I’m the bad guy.",
"You’re the one who’s always making me feel like I’m the villain.",
"You’re the one who’s always making me feel like I’m the one who needs to change.",
"You’re the one who’s always making me feel like I’m the one who’s wrong.",
"You’re the one who’s always making me feel like I’m the one who’s crazy.",
"You’re the one who’s always making me feel like I’m the one who’s abusive.",
"You’re the one who’s always making me feel like I’m the one who’s toxic."
]
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score):
sadness = emotions.get("sadness", 0)
joy = emotions.get("joy", 0)
neutral = emotions.get("neutral", 0)
disgust = emotions.get("disgust", 0)
anger = emotions.get("anger", 0)
fear = emotions.get("fear", 0)
disgust = emotions.get("disgust", 0)
# 1. Performative Regret
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and
(sentiment == "undermining" or abuse_score > 40)
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"]) and
sentiment == "undermining"
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
sentiment == "undermining"
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
sentiment == "supportive" and
all(p in ["recovery phase"] for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "threat", "insults", "dismissiveness"]) and
sentiment == "undermining"
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"]) and
sentiment == "undermining"
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
sentiment == "undermining"
):
return "toxic resignation"
# 8. Aggressive Dismissal
if (
anger > 0.5 and
any(p in patterns for p in ["aggression", "insults", "control"]) and
sentiment == "undermining"
):
return "aggressive dismissal"
# 9. Deflective Hostility
if (
(0.2 < anger < 0.7 or 0.2 < disgust < 0.7) and
any(p in patterns for p in ["deflection", "projection"]) and
sentiment == "undermining"
):
return "deflective hostility"
# 10. Mocking Detachment
if (
(neutral + joy) > 0.5 and
any(p in patterns for p in ["mockery", "insults", "projection"]) and
sentiment == "undermining"
):
return "mocking detachment"
# 11. Contradictory Gaslight
if (
(joy + anger + sadness) > 0.5 and
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
sentiment == "undermining"
):
return "contradictory gaslight"
# 12. Calculated Neutrality
if (
neutral > 0.6 and
any(p in patterns for p in ["obscure language", "deflection", "dismissiveness"]) and
sentiment == "undermining"
):
return "calculated neutrality"
# 13. Forced Accountability Flip
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "manipulation", "projection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# 14. Conditional Affection
if (
joy > 0.4 and
any(p in patterns for p in ["apology baiting", "control", "recovery phase"]) and
sentiment == "undermining"
):
return "conditional affection"
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "projection", "deflection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# Emotional Instability Fallback
if (
(anger + sadness + disgust) > 0.6 and
sentiment == "undermining"
):
return "emotional instability"
return None
def detect_contradiction(message):
patterns = [
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
(r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE),
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
]
return any(re.search(p, message, flags) for p, flags in patterns)
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
# Count all detected DARVO-related patterns
pattern_hits = sum(1 for p in patterns if p.lower() in DARVO_PATTERNS)
# Sentiment delta
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
# Match against DARVO motifs more loosely
motif_hits = sum(
any(phrase.lower() in motif.lower() or motif.lower() in phrase.lower()
for phrase in DARVO_MOTIFS)
for motif in motifs_found
)
motif_score = motif_hits / max(len(DARVO_MOTIFS), 1)
# Contradiction still binary
contradiction_score = 1.0 if contradiction_flag else 0.0
# Final DARVO score
return round(min(
0.3 * pattern_hits +
0.3 * sentiment_shift_score +
0.25 * motif_score +
0.15 * contradiction_score, 1.0
), 3)
def detect_weapon_language(text):
weapon_keywords = [
"knife", "knives", "stab", "cut you", "cutting",
"gun", "shoot", "rifle", "firearm", "pistol",
"bomb", "blow up", "grenade", "explode",
"weapon", "armed", "loaded", "kill you", "take you out"
]
text_lower = text.lower()
return any(word in text_lower for word in weapon_keywords)
def get_risk_stage(patterns, sentiment):
if "threat" in patterns or "insults" in patterns:
return 2
elif "recovery phase" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
import re
# Extract aggression score if aggression is detected
if isinstance(top_label, str) and "aggression" in top_label.lower():
try:
match = re.search(r"\(?(\d+)\%?\)?", top_label)
aggression_score = int(match.group(1)) / 100 if match else 0
except:
aggression_score = 0
else:
aggression_score = 0
# Revised risk logic
if abuse_score >= 85 or escalation_score >= 16:
risk_level = "high"
elif abuse_score >= 60 or escalation_score >= 8 or aggression_score >= 0.25:
risk_level = "moderate"
elif stage == 2 and abuse_score >= 40:
risk_level = "moderate"
else:
risk_level = "low"
if isinstance(top_label, str) and " – " in top_label:
pattern_label, pattern_score = top_label.split(" – ")
else:
pattern_label = str(top_label) if top_label is not None else "Unknown"
pattern_score = ""
WHY_FLAGGED = {
"control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
"threat": "This message includes threatening language, which is a strong predictor of harm.",
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
"projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
}
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
base = f"\n\n🛑 Risk Level: {risk_level.capitalize()}\n"
base += f"This message shows strong indicators of **{pattern_label}**. "
if risk_level == "high":
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
elif risk_level == "moderate":
base += "There are signs of emotional pressure or verbal aggression that may escalate if repeated.\n"
else:
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
base += f"\n💡 *Why this might be flagged:*\n{explanation}\n"
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
return base
WHY_FLAGGED = {
"control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
"threat": "This message includes threatening language, which is a strong predictor of harm.",
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
"projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
}
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
base = f"\n\n🛑 Risk Level: {risk_level.capitalize()}\n"
base += f"This message shows strong indicators of **{pattern_label}**. "
if risk_level == "high":
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
elif risk_level == "moderate":
base += "There are signs of emotional pressure or indirect control that may escalate if repeated.\n"
else:
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
base += f"\n💡 *Why this might be flagged:*\n{explanation}\n"
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
return base
def compute_abuse_score(matched_scores, sentiment):
if not matched_scores:
return 0
# Weighted average of passed patterns
weighted_total = sum(score * weight for _, score, weight in matched_scores)
weight_sum = sum(weight for _, _, weight in matched_scores)
base_score = (weighted_total / weight_sum) * 100
# Boost for pattern count
pattern_count = len(matched_scores)
scale = 1.0 + 0.25 * max(0, pattern_count - 1) # 1.25x for 2, 1.5x for 3+
scaled_score = base_score * scale
# Pattern floors
FLOORS = {
"threat": 70,
"control": 40,
"gaslighting": 30,
"insults": 25,
"aggression": 40
}
floor = max(FLOORS.get(label, 0) for label, _, _ in matched_scores)
adjusted_score = max(scaled_score, floor)
# Sentiment tweak
if sentiment == "undermining" and adjusted_score < 50:
adjusted_score += 10
return min(adjusted_score, 100)
def analyze_single_message(text, thresholds):
motif_hits, matched_phrases = detect_motifs(text)
# Get emotion profile
emotion_profile = get_emotion_profile(text)
sentiment_score = emotion_profile.get("anger", 0) + emotion_profile.get("disgust", 0)
# Get model scores
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Sentiment override if neutral is high while critical thresholds are passed
if emotion_profile.get("neutral", 0) > 0.85 and any(
scores[LABELS.index(l)] > thresholds[l]
for l in ["control", "threat", "blame shifting"]
):
sentiment = "undermining"
else:
sentiment = "undermining" if sentiment_score > 0.25 else "supportive"
weapon_flag = detect_weapon_language(text)
adjusted_thresholds = {
k: v + 0.05 if sentiment == "supportive" else v
for k, v in thresholds.items()
}
contradiction_flag = detect_contradiction(text)
threshold_labels = [
label for label, score in zip(LABELS, scores)
if score > adjusted_thresholds[label]
]
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, 0)
motifs = [phrase for _, phrase in matched_phrases]
darvo_score = calculate_darvo_score(
threshold_labels,
sentiment_before=0.0,
sentiment_after=sentiment_score,
motifs_found=motifs,
contradiction_flag=contradiction_flag
)
top_patterns = sorted(
[(label, score) for label, score in zip(LABELS, scores)],
key=lambda x: x[1],
reverse=True
)[:2]
# Post-threshold validation: strip recovery if it occurs with undermining sentiment
if "recovery" in threshold_labels and tone_tag == "forced accountability flip":
threshold_labels.remove("recovery")
top_patterns = [p for p in top_patterns if p[0] != "recovery"]
print("⚠️ Removing 'recovery' due to undermining sentiment (not genuine repair)")
matched_scores = [
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
for label, score in zip(LABELS, scores)
if score > adjusted_thresholds[label]
]
abuse_score_raw = compute_abuse_score(matched_scores, sentiment)
abuse_score = abuse_score_raw
# Risk stage logic
stage = get_risk_stage(threshold_labels, sentiment) if threshold_labels else 1
if weapon_flag and stage < 2:
stage = 2
if weapon_flag:
abuse_score_raw = min(abuse_score_raw + 25, 100)
abuse_score = min(
abuse_score_raw,
100 if "threat" in threshold_labels or "control" in threshold_labels else 95
)
# Tone tag must happen after abuse_score is finalized
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, abuse_score)
# Debug
print(f"Emotional Tone Tag: {tone_tag}")
print("Emotion Profile:")
for emotion, score in emotion_profile.items():
print(f" {emotion.capitalize():10}: {score}")
print("\n--- Debug Info ---")
print(f"Text: {text}")
print(f"Sentiment (via emotion): {sentiment} (score: {round(sentiment_score, 3)})")
print("Abuse Pattern Scores:")
for label, score in zip(LABELS, scores):
passed = "✅" if score > adjusted_thresholds[label] else "❌"
print(f" {label:25} → {score:.3f} {passed}")
print(f"Matched for score: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
print(f"Motifs: {motifs}")
print(f"Contradiction: {contradiction_flag}")
print("------------------\n")
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
def analyze_composite(msg1, date1, msg2, date2, msg3, date3, *answers_and_none):
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
if none_selected:
escalation_score = None
risk_level = "unknown"
else:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
messages = [msg1, msg2, msg3]
dates = [date1, date2, date3]
active = [(m, d) for m, d in zip(messages, dates) if m.strip()]
if not active:
return "Please enter at least one message."
# Run model on messages
results = [(analyze_single_message(m, THRESHOLDS.copy()), d) for m, d in active]
abuse_scores = [r[0][0] for r in results]
top_labels = [r[0][1][0] if r[0][1] else r[0][2][0][0] for r in results]
top_scores = [r[0][2][0][1] for r in results]
sentiments = [r[0][3]['label'] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags= [r[0][6] for r in results]
dates_used = [r[1] or "Undated" for r in results] # Store dates for future mapping
# Calculate escalation bump *after* model results exist
escalation_bump = 0
for result, _ in results:
abuse_score, threshold_labels, top_patterns, sentiment, stage, darvo_score, tone_tag = result
if darvo_score > 0.65:
escalation_bump += 3
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
if abuse_score > 80:
escalation_bump += 2
if stage == 2:
escalation_bump += 3
# Now we can safely calculate hybrid_score
hybrid_score = escalation_score + escalation_bump if escalation_score is not None else 0
risk_level = (
"High" if hybrid_score >= 16 else
"Moderate" if hybrid_score >= 8 else
"Low"
)
# Now compute scores and allow override
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
# Post-check override (e.g. stage 2 or high abuse score forces Moderate risk)
if any(score > 70 for score in abuse_scores) or any(stage == 2 for stage in stages):
if risk_level == "Low":
risk_level = "Moderate"
for result, date in results:
assert len(result) == 7, "Unexpected output from analyze_single_message"
# --- Composite Abuse Score using compute_abuse_score ---
composite_abuse_scores = []
for result, _ in results:
_, _, top_patterns, sentiment, _, _, _ = result
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in top_patterns]
final_score = compute_abuse_score(matched_scores, sentiment["label"])
composite_abuse_scores.append(final_score)
composite_abuse = int(round(sum(composite_abuse_scores) / len(composite_abuse_scores)))
most_common_stage = max(set(stages), key=stages.count)
stage_text = RISK_STAGE_LABELS[most_common_stage]
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
darvo_blurb = ""
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
out = f"Abuse Intensity: {composite_abuse}%\n"
out += "📊 This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
# Save this line for later use at the
if escalation_score is None:
escalation_text = "📉 Escalation Potential: Unknown (Checklist not completed)\n"
escalation_text += "⚠️ *This section was not completed. Escalation potential is unknown.*\n"
hybrid_score = 0 # ✅ fallback so it's defined for generate_risk_snippet
else:
escalation_text = f"🧨 **Escalation Potential: {risk_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})**\n"
escalation_text += "This score comes directly from the safety checklist and functions as a standalone escalation risk score.\n"
escalation_text += "It indicates how many serious risk factors are present based on your answers to the safety checklist.\n"
# Derive top_label from the strongest top_patterns across all messages
top_label = None
if results:
sorted_patterns = sorted(
[(label, score) for r in results for label, score in r[0][2]],
key=lambda x: x[1],
reverse=True
)
if sorted_patterns:
top_label = f"{sorted_patterns[0][0]} – {int(round(sorted_patterns[0][1] * 100))}%"
if top_label is None:
top_label = "Unknown – 0%"
out += generate_risk_snippet(composite_abuse, top_label, hybrid_score if escalation_score is not None else 0, most_common_stage)
out += f"\n\n{stage_text}"
out += darvo_blurb
out += "\n\n🎭 **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
label = tone if tone else "none"
out += f"• Message {i+1}: *{label}*\n"
print(f"DEBUG: avg_darvo = {avg_darvo}")
pattern_labels = [r[0][2][0][0] for r in results] # top label for each message
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
out += "\n\n" + escalation_text
return out, timeline_image
message_date_pairs = [
(
gr.Textbox(label=f"Message {i+1}"),
gr.Textbox(label=f"Date {i+1} (optional)", placeholder="YYYY-MM-DD")
)
for i in range(3)
]
textbox_inputs = [item for pair in message_date_pairs for item in pair]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")
iface = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + quiz_boxes + [none_box],
outputs=[
gr.Textbox(label="Results"),
gr.Image(label="Abuse Score Timeline", type="pil")
],
title="Abuse Pattern Detector + Escalation Quiz",
allow_flagging="manual"
)
if __name__ == "__main__":
iface.launch() |