Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
| import numpy as np | |
| import tempfile | |
| # Load model and tokenizer | |
| model_name = "SamanthaStorm/abuse-pattern-detector-v2" | |
| model = RobertaForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
| # Define the final label order your model used | |
| LABELS = [ | |
| "gaslighting", "mockery", "dismissiveness", "control", | |
| "guilt_tripping", "apology_baiting", "blame_shifting", "projection", | |
| "contradictory_statements", "manipulation", "deflection", "insults", | |
| "obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat", | |
| "extreme_control" | |
| ] | |
| TOTAL_LABELS = 17 | |
| # Our model outputs 17 labels: | |
| # - First 14 are abuse pattern categories | |
| # - Last 3 are Danger Assessment cues | |
| TOTAL_LABELS = 17 | |
| # Individual thresholds for each of the 17 labels | |
| THRESHOLDS = { | |
| "gaslighting": 0.15, | |
| "mockery": 0.15, | |
| "dismissiveness": 0.30, | |
| "control": 0.13, | |
| "guilt_tripping": 0.15, | |
| "apology_baiting": 0.15, | |
| "blame_shifting": 0.15, | |
| "projection": 0.20, | |
| "contradictory_statements": 0.15, | |
| "manipulation": 0.15, | |
| "deflection": 0.15, | |
| "insults": 0.20, | |
| "obscure_formal": 0.20, | |
| "recovery_phase": 0.15, | |
| "suicidal_threat": 0.09, | |
| "physical_threat": 0.50, | |
| "extreme_control": 0.30 | |
| } | |
| def analyze_messages(input_text): | |
| input_text = input_text.strip() | |
| if not input_text: | |
| return "Please enter a message for analysis." | |
| # Tokenize | |
| inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Squeeze out batch dimension | |
| logits = outputs.logits.squeeze(0) | |
| # Convert to probabilities | |
| scores = torch.sigmoid(logits).numpy() | |
| print("Scores:", scores) | |
| print("Danger Scores:", scores[14:]) # suicidal, physical, extreme | |
| pattern_count = 0 | |
| danger_flag_count = 0 | |
| for i, (label, score) in enumerate(zip(LABELS, scores)): | |
| if score > THRESHOLDS[label]: | |
| if i < 14: | |
| pattern_count += 1 | |
| else: | |
| danger_flag_count += 1 | |
| # Optional debug print | |
| for i, s in enumerate(scores): | |
| print(LABELS[i], "=", round(s, 3)) | |
| danger_assessment = ( | |
| "High" if danger_flag_count >= 2 else | |
| "Moderate" if danger_flag_count == 1 else | |
| "Low" | |
| ) | |
| # Treat high-scoring danger cues as abuse patterns as well | |
| for danger_label in ["suicidal_threat", "physical_threat", "extreme_control"]: | |
| if scores[LABELS.index(danger_label)] > THRESHOLDS[danger_label]: | |
| pattern_count += 1 | |
| # Set resources | |
| if danger_assessment == "High": | |
| resources = ( | |
| "**Immediate Help:** If you are in immediate danger, please call 911.\n\n" | |
| "**Crisis Support:** National DV Hotline β Safety Planning: [thehotline.org/plan-for-safety](https://www.thehotline.org/plan-for-safety)\n" | |
| "**Legal Assistance:** WomensLaw β Legal Help for Survivors: [womenslaw.org](https://www.womenslaw.org)\n" | |
| "**Specialized Support:** For LGBTQ+, immigrants, and neurodivergent survivors, please consult local services." | |
| ) | |
| elif danger_assessment == "Moderate": | |
| resources = ( | |
| "**Safety Planning:** The Hotline β What Is Emotional Abuse?: [thehotline.org/resources](https://www.thehotline.org/resources)\n" | |
| "**Relationship Health:** One Love Foundation β Digital Relationship Health: [joinonelove.org](https://www.joinonelove.org)\n" | |
| "**Support Chat:** National Domestic Violence Hotline Chat: [thehotline.org](https://www.thehotline.org)\n" | |
| "**Specialized Groups:** Look for support groups tailored for LGBTQ+, immigrant, and neurodivergent communities." | |
| ) | |
| else: | |
| resources = ( | |
| "**Educational Resources:** Love Is Respect β Healthy Relationships: [loveisrespect.org](https://www.loveisrespect.org)\n" | |
| "**Therapy Finder:** Psychology Today β Find a Therapist: [psychologytoday.com](https://www.psychologytoday.com)\n" | |
| "**Relationship Tools:** Relate β Relationship Health Tools: [relate.org.uk](https://www.relate.org.uk)\n" | |
| "**Community Support:** Consider community-based and online support groups, especially those focused on LGBTQ+, immigrant, and neurodivergent survivors." | |
| ) | |
| # Output | |
| result_md = ( | |
| f"**Abuse Pattern Count:** {pattern_count}\n\n" | |
| f"**Support Resources:**\n{resources}" | |
| ) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as f: | |
| f.write(result_md) | |
| report_path = f.name | |
| return result_md, report_path | |
| # Build the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Abuse Pattern Detector - Risk Analysis") | |
| gr.Markdown("Enter one or more messages (separated by newlines) for analysis.") | |
| text_input = gr.Textbox(label="Input Messages", lines=10, placeholder="Type your message(s) here...") | |
| result_output = gr.Markdown(label="Analysis Result") | |
| download_output = gr.File(label="Download Report (.txt)") | |
| text_input.submit(analyze_messages, inputs=text_input, outputs=[result_output, download_output]) | |
| analyze_btn = gr.Button("Analyze") | |
| analyze_btn.click(analyze_messages, inputs=text_input, outputs=[result_output, download_output]) | |
| if __name__ == "__main__": | |
| demo.launch() | |