Tether / app.py
SamanthaStorm's picture
Update app.py
38e8859 verified
raw
history blame
6.05 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from motif_tagging import detect_motifs
# Load models
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
model_name = "SamanthaStorm/autotrain-c1un8-p8vzo"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive",
"suicidal_threat", "physical_threat", "extreme_control"
]
THRESHOLDS = {
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.30
}
EXPLANATIONS = {
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
"blame_shifting": "Redirecting responsibility to the victim...",
"projection": "Accusing the victim of behaviors the abuser exhibits...",
"dismissiveness": "Belittling or disregarding someone's feelings...",
"mockery": "Ridiculing someone in a hurtful, humiliating way...",
"recovery_phase": "Dismissing someone's emotional healing...",
"insults": "Derogatory remarks aimed at degrading someone...",
"apology_baiting": "Manipulating victims into apologizing for abuse...",
"deflection": "Redirecting blame to avoid accountability...",
"control": "Restricting autonomy through manipulation...",
"extreme_control": "Dominating decisions and behaviors entirely...",
"physical_threat": "Signals risk of bodily harm...",
"suicidal_threat": "Manipulates others using self-harm threats...",
"guilt_tripping": "Uses guilt to manipulate someone's actions...",
"manipulation": "Deceives to influence or control outcomes...",
"non_abusive": "Respectful and free of coercion...",
"obscure_formal": "Uses confusion/superiority to manipulate..."
}
DANGER_LABELS = LABELS[15:18]
PATTERN_LABELS = LABELS[:15]
PATTERN_WEIGHTS = {
"physical_threat": 1.5, "suicidal_threat": 1.4, "extreme_control": 1.5,
"gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8,
"non_abusive": 0.0
}
def custom_sentiment(text):
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label_idx = torch.argmax(probs).item()
return {"label": "supportive" if label_idx == 0 else "undermining", "score": probs[0][label_idx].item()}
def calculate_abuse_level(scores, thresholds, motif_hits=None):
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
if any(label in (motif_hits or []) for label in DANGER_LABELS):
base_score = max(base_score, 75.0)
return base_score
def interpret_abuse_level(score):
if score > 80: return "Extreme / High Risk"
if score > 60: return "Severe / Harmful Pattern Present"
if score > 40: return "Likely Abuse"
if score > 20: return "Mild Concern"
return "Very Low / Likely Safe"
def analyze_single_message(text, thresholds, context_flags):
motif_flags, matched_phrases = detect_motifs(text)
sentiment = custom_sentiment(text)
thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
scores = torch.sigmoid(model(**inputs).logits.squeeze(0)).numpy()
labels_used = list(set([l for l, s in zip(PATTERN_LABELS, scores[:15]) if s > thresholds[l]] + [l for l, _ in matched_phrases]))
abuse_level = calculate_abuse_level(scores, thresholds, motif_hits=[l for l, _ in matched_phrases])
abuse_description = interpret_abuse_level(abuse_level)
danger_count = sum(scores[LABELS.index(lbl)] > thresholds[lbl] for lbl in DANGER_LABELS)
output = f"Score: {abuse_level}% – {abuse_description}\nLabels: {', '.join(labels_used)}"
return output, abuse_level
def analyze_composite(msg1, msg2, msg3, flags):
thresholds = THRESHOLDS.copy()
results = [analyze_single_message(t, thresholds, flags) for t in [msg1, msg2, msg3] if t.strip()]
result_texts = [r[0] for r in results]
composite_score = round(np.mean([r[1] for r in results]), 2) if results else 0.0
result_texts.append(f"\nComposite Abuse Score: {composite_score}%")
return tuple(result_texts)
iface = gr.Interface(
fn=analyze_composite,
inputs=[
gr.Textbox(lines=3, label="Message 1"),
gr.Textbox(lines=3, label="Message 2"),
gr.Textbox(lines=3, label="Message 3"),
gr.CheckboxGroup(label="Contextual Flags", choices=[
"They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
"They monitor/follow me", "I feel unsafe when alone with them"
])
],
outputs=[
gr.Textbox(label="Message 1 Result"),
gr.Textbox(label="Message 2 Result"),
gr.Textbox(label="Message 3 Result"),
gr.Textbox(label="Composite Score")
],
title="Abuse Pattern Detector (Multi-Message)",
flagging_mode="manual"
)
if __name__ == "__main__":
iface.launch()