Tether / app (20).py
SamanthaStorm's picture
Upload app (20).py
456b288 verified
raw
history blame
28.8 kB
import gradio as gr
import spaces
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from motif_tagging import detect_motifs
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from torch.nn.functional import sigmoid
from collections import Counter
# ─── Abuse Model ─────────────────────────────────────────────────
model_name = "SamanthaStorm/tether-multilabel-v3"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness", "blame shifting",
"nonabusive","projection", "insults", "contradictory statements", "obscure language"
]
THRESHOLDS = {
"recovery": 0.4,
"control": 0.45,
"gaslighting": 0.25,
"guilt tripping": 0.20,
"dismissiveness": 0.25,
"blame shifting": 0.25,
"projection": 0.25,
"insults": 0.05,
"contradictory statements": 0.25,
"obscure language": 0.15,
"nonabusive": 1.0
}
PATTERN_WEIGHTS = {
"recovery": 0.7,
"control": 1.4,
"gaslighting": 1.50,
"guilt tripping": 1.2,
"dismissiveness": 0.9,
"blame shifting": 0.8,
"projection": 0.5,
"insults": 1.4,
"contradictory statements": 1.0,
"obscure language": 0.9,
"nonabusive": 0.0
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
# ─── Escalation Risk Mapping ────────────────────────────────────
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
# ─── Escalation Risk Mapping ────────────────────────────────────
ESCALATION_RISKS = {
"blame shifting": "low",
"contradictory statements": "moderate",
"control": "high",
"dismissiveness": "moderate",
"gaslighting": "moderate",
"guilt tripping": "moderate",
"insults": "moderate",
"obscure language": "low",
"projection": "low",
"recovery phase": "low"
}
# ─── Risk Stage Labels ─────────────────────────────────────────
# ─── Risk Stage Labels ─────────────────────────────────────────
RISK_STAGE_LABELS = {
1: "πŸŒ€ Risk Stage: Tension-Building\n"
"This message reflects rising emotional pressure or subtle control attempts.",
2: "πŸ”₯ Risk Stage: Escalation\n"
"This message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\n"
"This message reflects a reset attemptβ€”apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\n"
"This message appears supportive but may follow prior harm, minimizing it."
}
# ─── Immediate Threat Motifs ───────────────────────────────────
THREAT_MOTIFS = [
"i'll kill you", "i’m going to hurt you", "you’re dead", "you won't survive this",
"i’ll break your face", "i'll bash your head in", "i’ll snap your neck",
"i’ll come over there and make you shut up", "i'll knock your teeth out",
"you’re going to bleed", "you want me to hit you?", "i won’t hold back next time",
"i swear to god i’ll beat you", "next time, i won’t miss", "i’ll make you scream",
"i know where you live", "i'm outside", "i’ll be waiting", "i saw you with him",
"you can’t hide from me", "i’m coming to get you", "i'll find you", "i know your schedule",
"i watched you leave", "i followed you home", "you'll regret this", "you’ll be sorry",
"you’re going to wish you hadn’t", "you brought this on yourself", "don’t push me",
"you have no idea what i’m capable of", "you better watch yourself",
"i don’t care what happens to you anymore", "i’ll make you suffer", "you’ll pay for this",
"i’ll never let you go", "you’re nothing without me", "if you leave me, i’ll kill myself",
"i'll ruin you", "i'll tell everyone what you did", "i’ll make sure everyone knows",
"i’m going to destroy your name", "you’ll lose everyone", "i’ll expose you",
"your friends will hate you", "i’ll post everything", "you’ll be cancelled",
"you’ll lose everything", "i’ll take the house", "i’ll drain your account",
"you’ll never see a dime", "you’ll be broke when i’m done", "i’ll make sure you lose your job",
"i’ll take your kids", "i’ll make sure you have nothing", "you can’t afford to leave me",
"don't make me do this", "you know what happens when i’m mad", "you’re forcing my hand",
"if you just behaved, this wouldn’t happen", "this is your fault",
"you’re making me hurt you", "i warned you", "you should have listened"
]
# New Tone & Sentiment Models
tone_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tone-tag-multilabel-v1", use_fast=False)
tone_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tone-tag-multilabel-v1")
TONE_LABELS = [
"cold invalidation", "coercive warmth", "contradictory gaslight",
"deflective hostility", "emotional instability", "nonabusive",
"performative regret", "emotional threat", "forced accountability flip"
]
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment", use_fast=False)
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
SENTIMENT_LABELS = ["undermining", "supportive"]
# ─── DARVO Model ──────────────────────────────────────────────────
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
def predict_darvo_score(text):
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = darvo_model(**inputs).logits
return round(sigmoid(logits).item(), 4)
def detect_weapon_language(text):
weapon_keywords = ["knife","gun","bomb","weapon","kill","stab"]
t = text.lower()
return any(w in t for w in weapon_keywords)
# ─── Updated Risk Stage Logic ─────────────────────────────────────
RISK_STAGE_LABELS = {
1: "πŸŒ€ Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "πŸ”₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attemptβ€”apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
def get_risk_stage(patterns, sentiment):
if "insults" in patterns:
return 2
elif "recovery" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
# ─── Emotion & Tone Removed (unneeded) ───────────────────────────
# (Emotion model block removed)
# ─── Replace get_emotional_tone_tag ──────────────────────────────
def get_emotional_tone_tag(text, emotions, sentiment, patterns, abuse_score):
inputs = tone_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = tone_model(**inputs).logits[0]
probs = torch.sigmoid(logits).cpu().numpy()
scores = dict(zip(TONE_LABELS, np.round(probs, 3)))
return max(scores, key=scores.get)
@spaces.GPU
def compute_abuse_score(matched_scores, sentiment):
"""
Compute abuse score from matched patterns and sentiment
"""
if not matched_scores:
return 0.0
# Calculate weighted score
total_weight = sum(weight for _, _, weight in matched_scores)
if total_weight == 0:
return 0.0
# Get highest pattern scores
pattern_scores = [(label, score) for label, score, _ in matched_scores]
sorted_scores = sorted(pattern_scores, key=lambda x: x[1], reverse=True)
# Base score calculation
weighted_sum = sum(score * weight for _, score, weight in matched_scores)
base_score = (weighted_sum / total_weight) * 100
# Pattern combination multipliers
if len(matched_scores) >= 3: # Multiple patterns detected
base_score *= 1.2 # 20% increase for pattern combinations
# High severity patterns
high_severity_patterns = {'gaslighting', 'control', 'blame shifting'}
if any(label in high_severity_patterns for label, _, _ in matched_scores):
base_score *= 1.15 # 15% increase for high severity patterns
# Pattern strength boosters
if any(score > 0.6 for _, score, _ in matched_scores): # Any pattern > 60%
base_score *= 1.1 # 10% increase for strong patterns
# Multiple high scores
high_scores = len([score for _, score, _ in matched_scores if score > 0.5])
if high_scores >= 2:
base_score *= 1.15 # 15% increase for multiple high scores
# Apply sentiment modifier
if sentiment == "supportive":
# Less reduction for supportive sentiment when high severity patterns present
if any(label in high_severity_patterns for label, _, _ in matched_scores):
base_score *= 0.9 # Only 10% reduction
else:
base_score *= 0.85 # Normal 15% reduction
elif sentiment == "undermining":
base_score *= 1.15 # 15% increase for undermining sentiment
# Ensure minimum score for strong patterns
if any(score > 0.6 for _, score, _ in matched_scores):
base_score = max(base_score, 65.0)
# Cap maximum score
return min(round(base_score, 1), 100.0)
def analyze_single_message(text, thresholds):
print("\n=== DEBUG START ===")
print(f"Input text: {text}")
if not text.strip():
print("Empty text, returning zeros")
return 0.0, [], [], {"label": "none"}, 1, 0.0, None
# Check for explicit abuse
explicit_abuse_words = ['fuck', 'bitch', 'shit', 'ass', 'dick']
explicit_abuse = any(word in text.lower() for word in explicit_abuse_words)
print(f"Explicit abuse detected: {explicit_abuse}")
# Abuse model inference
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
raw_scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Print raw model outputs
print("\nRaw model scores:")
for label, score in zip(LABELS, raw_scores):
print(f"{label}: {score:.3f}")
# Get predictions and sort them
predictions = list(zip(LABELS, raw_scores))
sorted_predictions = sorted(predictions, key=lambda x: x[1], reverse=True)
print("\nTop 3 predictions:")
for label, score in sorted_predictions[:3]:
print(f"{label}: {score:.3f}")
# Apply thresholds
threshold_labels = []
if explicit_abuse:
threshold_labels.append("insults")
print("\nForced inclusion of 'insults' due to explicit abuse")
for label, score in sorted_predictions:
base_threshold = thresholds.get(label, 0.25)
if explicit_abuse:
base_threshold *= 0.5
if score > base_threshold:
if label not in threshold_labels: # Avoid duplicates
threshold_labels.append(label)
print("\nLabels that passed thresholds:", threshold_labels)
# Calculate matched scores
matched_scores = []
for label in threshold_labels:
score = raw_scores[LABELS.index(label)]
weight = PATTERN_WEIGHTS.get(label, 1.0)
if explicit_abuse and label == "insults":
weight *= 1.5
matched_scores.append((label, score, weight))
print("\nMatched scores (label, score, weight):", matched_scores)
# Calculate abuse score
if not matched_scores:
print("No matched scores, returning 0")
return 0.0, [], [], {"label": "undermining"}, 2 if explicit_abuse else 1, 0.0, None
weighted_sum = sum(score * weight for _, score, weight in matched_scores)
total_weight = sum(weight for _, _, weight in matched_scores)
abuse_score = (weighted_sum / total_weight) * 100
if explicit_abuse:
abuse_score = max(abuse_score, 70.0)
print(f"\nCalculated abuse score: {abuse_score}")
# Get sentiment
sent_inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
sent_logits = sentiment_model(**sent_inputs).logits[0]
sent_probs = torch.softmax(sent_logits, dim=-1).cpu().numpy()
sentiment = SENTIMENT_LABELS[int(np.argmax(sent_probs))]
print(f"\nDetected sentiment: {sentiment}")
# Get tone
tone_inputs = tone_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
tone_logits = tone_model(**tone_inputs).logits[0]
tone_probs = torch.sigmoid(tone_logits).cpu().numpy()
tone_tag = TONE_LABELS[int(np.argmax(tone_probs))]
print(f"Detected tone: {tone_tag}")
# Get DARVO score
darvo_score = predict_darvo_score(text)
print(f"DARVO score: {darvo_score}")
# Set stage
stage = 2 if explicit_abuse or abuse_score > 70 else 1
print(f"Final stage: {stage}")
print("=== DEBUG END ===\n")
return abuse_score, threshold_labels, matched_scores, {"label": sentiment}, stage, darvo_score, tone_tag
def generate_risk_snippet(abuse_score, top_label, hybrid_score, stage):
"""
Generate risk assessment snippet based on abuse score and other factors
"""
risk_level = (
"Critical" if abuse_score >= 85 or hybrid_score >= 20 else
"High" if abuse_score >= 70 or hybrid_score >= 15 else
"Moderate" if abuse_score >= 50 or hybrid_score >= 10 else
"Low"
)
risk_descriptions = {
"Critical": (
"🚨 **Risk Level: Critical**\n"
"Multiple severe abuse patterns detected. This situation shows signs of "
"dangerous escalation and immediate intervention may be needed."
),
"High": (
"⚠️ **Risk Level: High**\n"
"Strong abuse patterns detected. This situation shows concerning "
"signs of manipulation and control."
),
"Moderate": (
"⚑ **Risk Level: Moderate**\n"
"Concerning patterns detected. While not severe, these behaviors "
"indicate unhealthy relationship dynamics."
),
"Low": (
"πŸ“ **Risk Level: Low**\n"
"Minor concerning patterns detected. While present, the detected "
"behaviors are subtle or infrequent."
)
}
# Add stage-specific context
stage_context = {
1: "Current patterns suggest a tension-building phase.",
2: "Messages show signs of active escalation.",
3: "Patterns indicate attempted reconciliation without real change.",
4: "Surface calm may mask underlying issues."
}
snippet = risk_descriptions[risk_level]
if stage in stage_context:
snippet += f"\n{stage_context[stage]}"
return snippet
def generate_abuse_score_chart(dates, scores, patterns):
"""
Generate a timeline chart of abuse scores
"""
plt.figure(figsize=(10, 6))
plt.clf()
# Create new figure
fig, ax = plt.subplots(figsize=(10, 6))
# Plot points and lines
x = range(len(scores))
plt.plot(x, scores, 'bo-', linewidth=2, markersize=8)
# Add labels for each point
for i, (score, pattern) in enumerate(zip(scores, patterns)):
plt.annotate(
f'{pattern}\n{score:.0f}%',
(i, score),
textcoords="offset points",
xytext=(0, 10),
ha='center',
bbox=dict(
boxstyle='round,pad=0.5',
fc='white',
ec='gray',
alpha=0.8
)
)
# Customize the plot
plt.ylim(-5, 105)
plt.grid(True, linestyle='--', alpha=0.7)
plt.title('Abuse Pattern Timeline', pad=20, fontsize=12)
plt.ylabel('Abuse Score %')
# X-axis labels
plt.xticks(x, dates, rotation=45)
# Risk level bands with better colors
plt.axhspan(0, 50, color='#90EE90', alpha=0.2) # light green
plt.axhspan(50, 70, color='#FFD700', alpha=0.2) # gold
plt.axhspan(70, 85, color='#FFA500', alpha=0.2) # orange
plt.axhspan(85, 100, color='#FF6B6B', alpha=0.2) # light red
# Add risk level labels
plt.text(-0.2, 25, 'Low Risk', rotation=90, va='center')
plt.text(-0.2, 60, 'Moderate Risk', rotation=90, va='center')
plt.text(-0.2, 77.5, 'High Risk', rotation=90, va='center')
plt.text(-0.2, 92.5, 'Critical Risk', rotation=90, va='center')
# Adjust layout
plt.tight_layout()
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close('all') # Close all figures to prevent memory leaks
return Image.open(buf)
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
from collections import Counter
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
if none_selected:
escalation_score = 0
escalation_note = "Checklist completed: no danger items reported."
escalation_completed = True
elif responses_checked:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
escalation_note = "Checklist completed."
escalation_completed = True
else:
escalation_score = None
escalation_note = "Checklist not completed."
escalation_completed = False
messages = [msg1, msg2, msg3]
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
if not active:
return "Please enter at least one message.", None
# Flag any threat phrases present in the messages
import re
def normalize(text):
import unicodedata
text = text.lower().strip()
text = unicodedata.normalize("NFKD", text) # handles curly quotes
text = text.replace("’", "'") # smart to straight
return re.sub(r"[^a-z0-9 ]", "", text)
def detect_threat_motifs(message, motif_list):
norm_msg = normalize(message)
return [
motif for motif in motif_list
if normalize(motif) in norm_msg
]
# Collect matches per message
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
flat_threats = [t for sublist in immediate_threats for t in sublist]
threat_risk = "Yes" if flat_threats else "No"
results = [(analyze_single_message(m, THRESHOLDS.copy()), d) for m, d in active]
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags = [r[0][6] for r in results]
dates_used = [r[1] for r in results]
predicted_labels = [label for r in results for label in r[0][1]] # Use threshold_labels instead
high = {'control'}
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 'contradictory statements', 'guilt tripping'}
low = {'blame shifting', 'projection', 'recovery phase'}
counts = {'high': 0, 'moderate': 0, 'low': 0}
for label in predicted_labels:
if label in high:
counts['high'] += 1
elif label in moderate:
counts['moderate'] += 1
elif label in low:
counts['low'] += 1
# Pattern escalation logic
pattern_escalation_risk = "Low"
if counts['high'] >= 2 and counts['moderate'] >= 2:
pattern_escalation_risk = "Critical"
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or (counts['moderate'] >= 3) or (counts['high'] >= 1 and counts['moderate'] >= 2):
pattern_escalation_risk = "High"
elif (counts['moderate'] == 2) or (counts['high'] == 1 and counts['moderate'] == 1) or (counts['moderate'] == 1 and counts['low'] >= 2) or (counts['high'] == 1 and sum(counts.values()) == 1):
pattern_escalation_risk = "Moderate"
checklist_escalation_risk = "Unknown" if escalation_score is None else (
"Critical" if escalation_score >= 20 else
"Moderate" if escalation_score >= 10 else
"Low"
)
escalation_bump = 0
for result, _ in results:
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
if darvo_score > 0.65:
escalation_bump += 3
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
if abuse_score > 80:
escalation_bump += 2
if stage == 2:
escalation_bump += 3
def rank(label):
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
escalation_risk = (
"Critical" if combined_score >= 6 else
"High" if combined_score >= 4 else
"Moderate" if combined_score >= 2 else
"Low"
)
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
# Determine escalation_score
if none_selected:
escalation_score = 0
escalation_completed = True
elif responses_checked:
escalation_score = sum(
w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a
)
escalation_completed = True
else:
escalation_score = None
escalation_completed = False
# Build escalation_text and hybrid_score
if escalation_score is None:
escalation_text = (
"🚫 **Escalation Potential: Unknown** (Checklist not completed)\n"
"⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
)
hybrid_score = 0
elif escalation_score == 0:
escalation_text = (
"βœ… **Escalation Checklist Completed:** No danger items reported.\n"
"🧭 **Escalation potential estimated from detected message patterns only.**\n"
f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
f"β€’ Checklist Risk: None reported\n"
f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
hybrid_score = escalation_bump
else:
hybrid_score = escalation_score + escalation_bump
escalation_text = (
f"πŸ“ˆ **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
"πŸ“‹ This score combines your safety checklist answers *and* detected high-risk behavior.\n"
f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
f"β€’ Checklist Risk: {checklist_escalation_risk}\n"
f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
# Composite Abuse Score
composite_abuse_scores = []
for result, _ in results:
abuse_score, _, matched_scores, sentiment, _, _, _ = result
composite_abuse_scores.append(abuse_score) # Just use the already calculated abuse score
composite_abuse = int(round(sum(composite_abuse_scores) / len(composite_abuse_scores)))
most_common_stage = max(set(stages), key=stages.count)
stage_text = RISK_STAGE_LABELS[most_common_stage]
# Derive top label list for each message
top_labels = []
for result, _ in results:
threshold_labels = result[1] # Get threshold_labels from result
if threshold_labels: # If we have threshold labels
top_labels.append(threshold_labels[0]) # Add the first one
else:
top_labels.append("none") # Default if no labels
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
darvo_blurb = ""
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** β†’ This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
out = f"Abuse Intensity: {composite_abuse}%\n"
out += "πŸ“Š This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
out += generate_risk_snippet(composite_abuse, top_labels[0], hybrid_score, most_common_stage)
out += f"\n\n{stage_text}"
out += darvo_blurb
out += "\n\n🎭 **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
out += f"β€’ Message {i+1}: *{tone or 'none'}*\n"
# --- Add Immediate Danger Threats section
if flat_threats:
out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
for t in set(flat_threats):
out += f"β€’ \"{t}\"\n"
out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
else:
out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
out += "This does *not* rule out risk, but no direct threat phrases were matched."
pattern_labels = [
pats[0][0] if (pats := r[0][2]) else "none"
for r in results
]
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, pattern_labels)
out += "\n\n" + escalation_text
return out, timeline_image
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")
# ─── FINAL β€œFORCE LAUNCH” (no guards) ────────────────────────
demo = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + quiz_boxes + [none_box],
outputs=[
gr.Textbox(label="Results"),
gr.Image(label="Abuse Score Timeline", type="pil")
],
title="Abuse Pattern Detector + Escalation Quiz",
description=(
"Enter up to three messages that concern you. "
"For the most accurate results, include messages from a recent emotionally intense period."
),
flagging_mode="manual"
)
# This single call will start the server and block,
# keeping the container alive on Spaces.
demo.launch()