Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
| from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
| from motif_tagging import detect_motifs | |
| import re | |
| # --- SST Sentiment Model --- | |
| sst_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
| # --- Abuse Model --- | |
| model_name = "SamanthaStorm/autotrain-jlpi4-mllvp" | |
| model = RobertaForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
| LABELS = [ | |
| "blame shifting", "contradictory statements", "control", "dismissiveness", | |
| "gaslighting", "guilt tripping", "insults", "obscure language", | |
| "projection", "recovery phase", "threat" | |
| ] | |
| THRESHOLDS = { | |
| "blame shifting": 0.3, "contradictory statements": 0.32, "control": 0.48, "dismissiveness": 0.45, | |
| "gaslighting": 0.30, "guilt tripping": 0.20, "insults": 0.34, "obscure language": 0.25, | |
| "projection": 0.35, "recovery phase": 0.25, "threat": 0.25 | |
| } | |
| PATTERN_WEIGHTS = { | |
| "gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8, | |
| "blame shifting": 0.8, "contradictory statements": 0.75 | |
| } | |
| EXPLANATIONS = { | |
| "blame shifting": "Blame-shifting redirects responsibility to avoid accountability.", | |
| "contradictory statements": "Flipping positions or denying previous claims.", | |
| "control": "Attempts to restrict another person’s autonomy.", | |
| "dismissiveness": "Disregarding or belittling someone’s feelings or needs.", | |
| "gaslighting": "Manipulating someone into questioning their reality.", | |
| "guilt tripping": "Using guilt to control or pressure.", | |
| "insults": "Derogatory or demeaning language.", | |
| "obscure language": "Vague, superior, or confusing language used manipulatively.", | |
| "projection": "Accusing someone else of your own behaviors.", | |
| "recovery phase": "Resetting tension without real change.", | |
| "threat": "Using fear or harm to control or intimidate." | |
| } | |
| RISK_SNIPPETS = { | |
| "low": ( | |
| "🟢 Risk Level: Low", | |
| "The language patterns here do not strongly indicate abuse.", | |
| "Check in with yourself and monitor for repeated patterns." | |
| ), | |
| "moderate": ( | |
| "⚠️ Risk Level: Moderate to High", | |
| "Language includes control, guilt, or reversal tactics.", | |
| "These patterns reduce self-trust. Document or talk with someone safe." | |
| ), | |
| "high": ( | |
| "🛑 Risk Level: High", | |
| "Strong indicators of coercive control or threat present.", | |
| "Consider building a safety plan or contacting support." | |
| ) | |
| } | |
| DARVO_PATTERNS = { | |
| "blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements" | |
| } | |
| DARVO_MOTIFS = [ | |
| "i guess i’m the bad guy", "after everything i’ve done", "you always twist everything", | |
| "so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen", | |
| "you’re attacking me", "i’m done trying", "i’m the only one who cares" | |
| ] | |
| ESCALATION_QUESTIONS = [ | |
| ("Partner has access to firearms or weapons", 4), | |
| ("Partner threatened to kill you", 3), | |
| ("Partner threatened you with a weapon", 3), | |
| ("Partner has ever choked you, even if you considered it consensual at the time", 4), | |
| ("Partner injured or threatened your pet(s)", 3), | |
| ("Partner has broken your things, punched or kicked walls, or thrown things ", 2), | |
| ("Partner forced or coerced you into unwanted sexual acts", 3), | |
| ("Partner threatened to take away your children", 2), | |
| ("Violence has increased in frequency or severity", 3), | |
| ("Partner monitors your calls/GPS/social media", 2) | |
| ] | |
| def detect_contradiction(message): | |
| patterns = [ | |
| (r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE), | |
| (r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE), | |
| (r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE), | |
| (r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE), | |
| (r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE), | |
| (r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE) | |
| ] | |
| return any(re.search(p, message, flags) for p, flags in patterns) | |
| def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False): | |
| pattern_hits = len([p for p in patterns if p in DARVO_PATTERNS]) | |
| pattern_score = pattern_hits / len(DARVO_PATTERNS) | |
| sentiment_shift_score = max(0.0, sentiment_after - sentiment_before) | |
| motif_hits = len([m for m in motifs_found if m.lower() in DARVO_MOTIFS]) | |
| motif_score = motif_hits / len(DARVO_MOTIFS) | |
| contradiction_score = 1.0 if contradiction_flag else 0.0 | |
| return round(min(0.3 * pattern_score + 0.3 * sentiment_shift_score + 0.25 * motif_score + 0.15 * contradiction_score, 1.0), 3) | |
| def generate_risk_snippet(abuse_score, top_label): | |
| if abuse_score >= 85: | |
| risk_level = "high" | |
| elif abuse_score >= 60: | |
| risk_level = "moderate" | |
| else: | |
| risk_level = "low" | |
| title, summary, advice = RISK_SNIPPETS[risk_level] | |
| return f"\n\n{title}\n{summary} (Pattern: **{str(top_label)}**)\n💡 {advice}" | |
| def analyze_single_message(text, thresholds, motif_flags): | |
| motif_hits, matched_phrases = detect_motifs(text) | |
| # SST Sentiment | |
| result = sst_pipeline(text)[0] | |
| sentiment = "supportive" if result['label'] == "POSITIVE" else "undermining" | |
| sentiment_score = result['score'] if sentiment == "undermining" else 0.0 | |
| adjusted_thresholds = { | |
| k: v + 0.05 if sentiment == "supportive" else v | |
| for k, v in thresholds.items() | |
| } | |
| contradiction_flag = detect_contradiction(text) | |
| motifs = [phrase for _, phrase in matched_phrases] | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy() | |
| threshold_labels = [ | |
| label for label, score in zip(LABELS, scores) | |
| if score > adjusted_thresholds[label] | |
| ] | |
| top_patterns = sorted( | |
| [(label, score) for label, score in zip(LABELS, scores)], | |
| key=lambda x: x[1], | |
| reverse=True | |
| )[:2] | |
| pattern_labels = threshold_labels + [label for label, _ in matched_phrases] | |
| darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag) | |
| return ( | |
| np.mean([score for _, score in top_patterns]) * 100, | |
| threshold_labels, | |
| top_patterns, | |
| darvo_score, | |
| {"label": sentiment, "raw_label": result['label'], "score": result['score']} | |
| ) | |
| def analyze_composite(msg1, msg2, msg3, *answers_and_none): | |
| responses = answers_and_none[:len(ESCALATION_QUESTIONS)] | |
| none_selected = answers_and_none[-1] | |
| escalation_score = 0 if none_selected else sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, responses) if a) | |
| escalation_level = "High" if escalation_score >= 16 else "Moderate" if escalation_score >= 8 else "Low" | |
| messages = [msg1, msg2, msg3] | |
| active = [m for m in messages if m.strip()] | |
| if not active: | |
| return "Please enter at least one message." | |
| results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active] | |
| abuse_scores = [r[0] for r in results] | |
| darvo_scores = [r[3] for r in results] | |
| top_label = max({label for r in results for label in r[2]}, key=lambda l: abuse_scores[0]) | |
| composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores))) | |
| avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3) | |
| out = f"Abuse Intensity: {composite_abuse}%\n" | |
| out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})" | |
| out += generate_risk_snippet(composite_abuse, top_label) | |
| if avg_darvo > 0.25: | |
| level = "moderate" if avg_darvo < 0.65 else "high" | |
| out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame." | |
| return out | |
| textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)] | |
| quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS] | |
| none_box = gr.Checkbox(label="None of the above") | |
| iface = gr.Interface( | |
| fn=analyze_composite, | |
| inputs=textbox_inputs + quiz_boxes + [none_box], | |
| outputs=gr.Textbox(label="Results"), | |
| title="Abuse Pattern Detector + Escalation Quiz", | |
| allow_flagging="manual" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |