Spaces:
Running
Running
import gradio as gr | |
import torch | |
import numpy as np | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
from motif_tagging import detect_motifs | |
import re | |
# --- SST Sentiment Model --- | |
sst_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
# --- Abuse Model --- | |
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp" | |
model = RobertaForSequenceClassification.from_pretrained(model_name) | |
tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
LABELS = [ | |
"blame shifting", "contradictory statements", "control", "dismissiveness", | |
"gaslighting", "guilt tripping", "insults", "obscure language", | |
"projection", "recovery phase", "threat" | |
] | |
THRESHOLDS = { | |
"blame shifting": 0.3, "contradictory statements": 0.32, "control": 0.48, "dismissiveness": 0.45, | |
"gaslighting": 0.30, "guilt tripping": 0.20, "insults": 0.34, "obscure language": 0.25, | |
"projection": 0.35, "recovery phase": 0.25, "threat": 0.25 | |
} | |
PATTERN_WEIGHTS = { | |
"gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8, | |
"blame shifting": 0.8, "contradictory statements": 0.75 | |
} | |
EXPLANATIONS = { | |
"blame shifting": "Blame-shifting redirects responsibility to avoid accountability.", | |
"contradictory statements": "Flipping positions or denying previous claims.", | |
"control": "Attempts to restrict another person’s autonomy.", | |
"dismissiveness": "Disregarding or belittling someone’s feelings or needs.", | |
"gaslighting": "Manipulating someone into questioning their reality.", | |
"guilt tripping": "Using guilt to control or pressure.", | |
"insults": "Derogatory or demeaning language.", | |
"obscure language": "Vague, superior, or confusing language used manipulatively.", | |
"projection": "Accusing someone else of your own behaviors.", | |
"recovery phase": "Resetting tension without real change.", | |
"threat": "Using fear or harm to control or intimidate." | |
} | |
RISK_SNIPPETS = { | |
"low": ( | |
"🟢 Risk Level: Low", | |
"The language patterns here do not strongly indicate abuse.", | |
"Check in with yourself and monitor for repeated patterns." | |
), | |
"moderate": ( | |
"⚠️ Risk Level: Moderate to High", | |
"Language includes control, guilt, or reversal tactics.", | |
"These patterns reduce self-trust. Document or talk with someone safe." | |
), | |
"high": ( | |
"🛑 Risk Level: High", | |
"Strong indicators of coercive control or threat present.", | |
"Consider building a safety plan or contacting support." | |
) | |
} | |
DARVO_PATTERNS = { | |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements" | |
} | |
DARVO_MOTIFS = [ | |
"i guess i’m the bad guy", "after everything i’ve done", "you always twist everything", | |
"so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen", | |
"you’re attacking me", "i’m done trying", "i’m the only one who cares" | |
] | |
ESCALATION_QUESTIONS = [ | |
("Partner has access to firearms or weapons", 4), | |
("Partner threatened to kill you", 3), | |
("Partner threatened you with a weapon", 3), | |
("Partner has ever choked you, even if you considered it consensual at the time", 4), | |
("Partner injured or threatened your pet(s)", 3), | |
("Partner has broken your things, punched or kicked walls, or thrown things ", 2), | |
("Partner forced or coerced you into unwanted sexual acts", 3), | |
("Partner threatened to take away your children", 2), | |
("Violence has increased in frequency or severity", 3), | |
("Partner monitors your calls/GPS/social media", 2) | |
] | |
def detect_contradiction(message): | |
patterns = [ | |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE), | |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE), | |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE), | |
(r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE), | |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE), | |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE) | |
] | |
return any(re.search(p, message, flags) for p, flags in patterns) | |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False): | |
pattern_hits = len([p for p in patterns if p in DARVO_PATTERNS]) | |
pattern_score = pattern_hits / len(DARVO_PATTERNS) | |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before) | |
motif_hits = len([m for m in motifs_found if m.lower() in DARVO_MOTIFS]) | |
motif_score = motif_hits / len(DARVO_MOTIFS) | |
contradiction_score = 1.0 if contradiction_flag else 0.0 | |
return round(min(0.3 * pattern_score + 0.3 * sentiment_shift_score + 0.25 * motif_score + 0.15 * contradiction_score, 1.0), 3) | |
def generate_risk_snippet(abuse_score, top_label): | |
if abuse_score >= 85: | |
risk_level = "high" | |
elif abuse_score >= 60: | |
risk_level = "moderate" | |
else: | |
risk_level = "low" | |
title, summary, advice = RISK_SNIPPETS[risk_level] | |
return f"\n\n{title}\n{summary} (Pattern: **{str(top_label)}**)\n💡 {advice}" | |
def analyze_single_message(text, thresholds, motif_flags): | |
motif_hits, matched_phrases = detect_motifs(text) | |
# SST Sentiment | |
result = sst_pipeline(text)[0] | |
sentiment = "supportive" if result['label'] == "POSITIVE" else "undermining" | |
sentiment_score = result['score'] if sentiment == "undermining" else 0.0 | |
adjusted_thresholds = { | |
k: v + 0.05 if sentiment == "supportive" else v | |
for k, v in thresholds.items() | |
} | |
contradiction_flag = detect_contradiction(text) | |
motifs = [phrase for _, phrase in matched_phrases] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy() | |
threshold_labels = [ | |
label for label, score in zip(LABELS, scores) | |
if score > adjusted_thresholds[label] | |
] | |
top_patterns = sorted( | |
[(label, score) for label, score in zip(LABELS, scores)], | |
key=lambda x: x[1], | |
reverse=True | |
)[:2] | |
pattern_labels = threshold_labels + [label for label, _ in matched_phrases] | |
darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag) | |
return ( | |
np.mean([score for _, score in top_patterns]) * 100, | |
threshold_labels, | |
top_patterns, | |
darvo_score, | |
{"label": sentiment, "raw_label": result['label'], "score": result['score']} | |
) | |
def analyze_composite(msg1, msg2, msg3, *answers_and_none): | |
responses = answers_and_none[:len(ESCALATION_QUESTIONS)] | |
none_selected = answers_and_none[-1] | |
escalation_score = 0 if none_selected else sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, responses) if a) | |
escalation_level = "High" if escalation_score >= 16 else "Moderate" if escalation_score >= 8 else "Low" | |
messages = [msg1, msg2, msg3] | |
active = [m for m in messages if m.strip()] | |
if not active: | |
return "Please enter at least one message." | |
results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active] | |
abuse_scores = [r[0] for r in results] | |
darvo_scores = [r[3] for r in results] | |
top_label = max({label for r in results for label in r[2]}, key=lambda l: abuse_scores[0]) | |
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores))) | |
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3) | |
out = f"Abuse Intensity: {composite_abuse}%\n" | |
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})" | |
out += generate_risk_snippet(composite_abuse, top_label) | |
if avg_darvo > 0.25: | |
level = "moderate" if avg_darvo < 0.65 else "high" | |
out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame." | |
return out | |
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)] | |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS] | |
none_box = gr.Checkbox(label="None of the above") | |
iface = gr.Interface( | |
fn=analyze_composite, | |
inputs=textbox_inputs + quiz_boxes + [none_box], | |
outputs=gr.Textbox(label="Results"), | |
title="Abuse Pattern Detector + Escalation Quiz", | |
allow_flagging="manual" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |