Tether / app.py
SamanthaStorm's picture
Rename app (23).py to app.py
ddbb48e verified
raw
history blame
32.9 kB
import gradio as gr
import spaces
import torch
import numpy as np
import re
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from motif_tagging import detect_motifs
from functools import lru_cache
from torch.nn.functional import sigmoid
# ----- Models -----
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Emotion model (CPU for stability)
emotion_pipeline = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=6,
truncation=True,
device=-1 # Force CPU usage
)
# Abuse Model
model_name = "SamanthaStorm/tether-multilabel-v4" # Or your HF Hub path
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model.to(device)
# DARVO Model
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
darvo_model.to(device)
def get_emotion_profile(text):
emotions = emotion_pipeline(text)
if isinstance(emotions, list) and isinstance(emotions[0], list):
emotions = emotions[0]
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
# Emotion model (no retraining needed)
emotion_pipeline = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=6,
truncation=True
)
# --- Timeline Visualization Function ---
def generate_abuse_score_chart(dates, scores, labels):
import matplotlib.pyplot as plt
import io
from PIL import Image
from datetime import datetime
import re
# Determine if all entries are valid dates
if all(re.match(r"\d{4}-\d{2}-\d{2}", d) for d in dates):
parsed_x = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
x_labels = [d.strftime("%Y-%m-%d") for d in parsed_x]
else:
parsed_x = list(range(1, len(dates) + 1))
x_labels = [f"Message {i+1}" for i in range(len(dates))]
fig, ax = plt.subplots(figsize=(8, 3))
ax.plot(parsed_x, scores, marker='o', linestyle='-', color='darkred', linewidth=2)
for x, y in zip(parsed_x, scores):
ax.text(x, y + 2, f"{int(y)}%", ha='center', fontsize=8, color='black')
ax.set_xticks(parsed_x)
ax.set_xticklabels(x_labels)
ax.set_xlabel("") # No axis label
ax.set_ylabel("Abuse Score (%)")
ax.set_ylim(0, 105)
ax.grid(True)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
# --- Abuse Model ---
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name = "SamanthaStorm/tether-multilabel-v4"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
LABELS = [
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness", "blame shifting",
"nonabusive","projection", "insults", "contradictory statements", "obscure language"
]
THRESHOLDS = {
"recovery": 0.27,
"control": 0.47,
"gaslighting": 0.48,
"guilt tripping": .56,
"dismissiveness": 0.25,
"blame shifting": 0.55,
"projection": 0.59,
"insults": 0.33,
"contradictory statements": 0.27,
"obscure language": 0.65,
"nonabusive": 1.0
}
PATTERN_WEIGHTS = {
"recovery": 0.5,
"control": 1.4,
"gaslighting": 1.0,
"guilt tripping": 0.9,
"dismissiveness": 0.9,
"blame shifting": 0.8,
"projection": 0.5,
"insults": 1.2,
"contradictory statements": 1.0,
"obscure language": 0.9,
"nonabusive": 0.0
}
ESCALATION_RISKS = {
"blame shifting": "low",
"contradictory statements": "moderate",
"control": "high",
"dismissiveness": "moderate",
"gaslighting": "moderate",
"guilt tripping": "moderate",
"insults": "moderate",
"obscure language": "low",
"projection": "low",
"recovery phase": "low"
}
RISK_STAGE_LABELS = {
1: "πŸŒ€ Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
2: "πŸ”₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attemptβ€”apologies or emotional repair without accountability.",
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
}
ESCALATION_QUESTIONS = [
("Partner has access to firearms or weapons", 4),
("Partner threatened to kill you", 3),
("Partner threatened you with a weapon", 3),
("Partner has ever choked you, even if you considered it consensual at the time", 4),
("Partner injured or threatened your pet(s)", 3),
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
("Partner forced or coerced you into unwanted sexual acts", 3),
("Partner threatened to take away your children", 2),
("Violence has increased in frequency or severity", 3),
("Partner monitors your calls/GPS/social media", 2)
]
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score):
sadness = emotions.get("sadness", 0)
joy = emotions.get("joy", 0)
neutral = emotions.get("neutral", 0)
disgust = emotions.get("disgust", 0)
anger = emotions.get("anger", 0)
fear = emotions.get("fear", 0)
disgust = emotions.get("disgust", 0)
# 1. Performative Regret
if (
sadness > 0.4 and
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and
(sentiment == "undermining" or abuse_score > 40)
):
return "performative regret"
# 2. Coercive Warmth
if (
(joy > 0.3 or sadness > 0.4) and
any(p in patterns for p in ["control", "gaslighting"]) and
sentiment == "undermining"
):
return "coercive warmth"
# 3. Cold Invalidation
if (
(neutral + disgust) > 0.5 and
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
sentiment == "undermining"
):
return "cold invalidation"
# 4. Genuine Vulnerability
if (
(sadness + fear) > 0.5 and
sentiment == "supportive" and
all(p in ["recovery phase"] for p in patterns)
):
return "genuine vulnerability"
# 5. Emotional Threat
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
sentiment == "undermining"
):
return "emotional threat"
# 6. Weaponized Sadness
if (
sadness > 0.6 and
any(p in patterns for p in ["guilt tripping", "projection"]) and
sentiment == "undermining"
):
return "weaponized sadness"
# 7. Toxic Resignation
if (
neutral > 0.5 and
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
sentiment == "undermining"
):
return "toxic resignation"
# 8. Aggressive Dismissal
if (
anger > 0.5 and
any(p in patterns for p in ["aggression", "insults", "control"]) and
sentiment == "undermining"
):
return "aggressive dismissal"
# 9. Deflective Hostility
if (
(0.2 < anger < 0.7 or 0.2 < disgust < 0.7) and
any(p in patterns for p in ["deflection", "projection"]) and
sentiment == "undermining"
):
return "deflective hostility"
# 10. Mocking Detachment
if (
(neutral + joy) > 0.5 and
any(p in patterns for p in ["mockery", "insults", "projection"]) and
sentiment == "undermining"
):
return "mocking detachment"
# 11. Contradictory Gaslight
if (
(joy + anger + sadness) > 0.5 and
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
sentiment == "undermining"
):
return "contradictory gaslight"
# 12. Calculated Neutrality
if (
neutral > 0.6 and
any(p in patterns for p in ["obscure language", "deflection", "dismissiveness"]) and
sentiment == "undermining"
):
return "calculated neutrality"
# 13. Forced Accountability Flip
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "manipulation", "projection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# 14. Conditional Affection
if (
joy > 0.4 and
any(p in patterns for p in ["apology baiting", "control", "recovery phase"]) and
sentiment == "undermining"
):
return "conditional affection"
if (
(anger + disgust) > 0.5 and
any(p in patterns for p in ["blame shifting", "projection", "deflection"]) and
sentiment == "undermining"
):
return "forced accountability flip"
# Emotional Instability Fallback
if (
(anger + sadness + disgust) > 0.6 and
sentiment == "undermining"
):
return "emotional instability"
return None
# πŸ”„ New DARVO score model (regression-based)
from torch.nn.functional import sigmoid
import torch
# Load your trained DARVO regressor from Hugging Face Hub
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
darvo_model.eval()
def predict_darvo_score(text):
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = darvo_model(**inputs).logits
score = sigmoid(logits).item()
return round(score, 4) # Rounded for display/output
def detect_weapon_language(text):
weapon_keywords = [
"knife", "knives", "stab", "cut you", "cutting",
"gun", "shoot", "rifle", "firearm", "pistol",
"bomb", "blow up", "grenade", "explode",
"weapon", "armed", "loaded", "kill you", "take you out"
]
text_lower = text.lower()
return any(word in text_lower for word in weapon_keywords)
def get_risk_stage(patterns, sentiment):
if "insults" in patterns:
return 2
elif "recovery phase" in patterns:
return 3
elif "control" in patterns or "guilt tripping" in patterns:
return 1
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
return 4
return 1
def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
import re
# Extract aggression score if aggression is detected
if isinstance(top_label, str) and "aggression" in top_label.lower():
try:
match = re.search(r"\(?(\d+)\%?\)?", top_label)
aggression_score = int(match.group(1)) / 100 if match else 0
except:
aggression_score = 0
else:
aggression_score = 0
# Revised risk logic
if abuse_score >= 85 or escalation_score >= 16:
risk_level = "high"
elif abuse_score >= 60 or escalation_score >= 8 or aggression_score >= 0.25:
risk_level = "moderate"
elif stage == 2 and abuse_score >= 40:
risk_level = "moderate"
else:
risk_level = "low"
if isinstance(top_label, str) and " – " in top_label:
pattern_label, pattern_score = top_label.split(" – ")
else:
pattern_label = str(top_label) if top_label is not None else "Unknown"
pattern_score = ""
WHY_FLAGGED = {
"control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
"projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
}
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
base = f"\n\nπŸ›‘ Risk Level: {risk_level.capitalize()}\n"
base += f"This message shows strong indicators of **{pattern_label}**. "
if risk_level == "high":
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
elif risk_level == "moderate":
base += "There are signs of emotional pressure or verbal aggression that may escalate if repeated.\n"
else:
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
base += f"\nπŸ’‘ *Why this might be flagged:*\n{explanation}\n"
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
base += "🧠 You can review the pattern in context. This tool highlights possible dynamicsβ€”not judgments."
return base
# --- Step X: Detect Immediate Danger Threats ---
THREAT_MOTIFS = [
"i'll kill you", "i’m going to hurt you", "you’re dead", "you won't survive this",
"i’ll break your face", "i'll bash your head in", "i’ll snap your neck",
"i’ll come over there and make you shut up", "i'll knock your teeth out",
"you’re going to bleed", "you want me to hit you?", "i won’t hold back next time",
"i swear to god i’ll beat you", "next time, i won’t miss", "i’ll make you scream",
"i know where you live", "i'm outside", "i’ll be waiting", "i saw you with him",
"you can’t hide from me", "i’m coming to get you", "i'll find you", "i know your schedule",
"i watched you leave", "i followed you home", "you'll regret this", "you’ll be sorry",
"you’re going to wish you hadn’t", "you brought this on yourself", "don’t push me",
"you have no idea what i’m capable of", "you better watch yourself",
"i don’t care what happens to you anymore", "i’ll make you suffer", "you’ll pay for this",
"i’ll never let you go", "you’re nothing without me", "if you leave me, i’ll kill myself",
"i'll ruin you", "i'll tell everyone what you did", "i’ll make sure everyone knows",
"i’m going to destroy your name", "you’ll lose everyone", "i’ll expose you",
"your friends will hate you", "i’ll post everything", "you’ll be cancelled",
"you’ll lose everything", "i’ll take the house", "i’ll drain your account",
"you’ll never see a dime", "you’ll be broke when i’m done", "i’ll make sure you lose your job",
"i’ll take your kids", "i’ll make sure you have nothing", "you can’t afford to leave me",
"don't make me do this", "you know what happens when i’m mad", "you’re forcing my hand",
"if you just behaved, this wouldn’t happen", "this is your fault",
"you’re making me hurt you", "i warned you", "you should have listened"
]
@spaces.GPU
def compute_abuse_score(matched_scores, sentiment):
"""
Compute abuse score with more conservative adjustments.
"""
if not matched_scores:
return 0.0
sorted_scores = sorted(matched_scores, key=lambda x: x[1], reverse=True)
highest_score = sorted_scores[0][1]
num_patterns = len(matched_scores)
# Scale down base score more aggressively if multiple patterns are present
if num_patterns > 1:
highest_score *= (1 - (num_patterns - 1) * 0.2) # Reduce by 20% for each additional pattern
base_score = highest_score * 100
critical_patterns = {
'gaslighting': 1.4, # Reduced
'guilt tripping': 1.3, # Reduced
'blame shifting': 1.2, # Reduced
'control': 1.3, # Reduced
'insults': 1.1, # Reduced
'manipulation': 1.2,
'love bombing': 1.2,
'emotional blackmail': 1.4,
'dismissiveness': 1.1,
'contradictory statements': 1.1
}
for label, score, _ in matched_scores:
if label in critical_patterns and score > 0.5:
base_score *= critical_patterns[label]
# Further reduce combination multipliers
if len(matched_scores) >= 2:
base_score *= 1.1 # Reduced
if len(matched_scores) >= 3:
base_score *= 1.05 # Reduced
# Reduce high confidence boost
if any(score > 0.8 for _, score, _ in matched_scores):
base_score *= 1.05 # Reduced
# Sentiment modifier (more nuanced)
if emotion_profile.get("neutral", 0) > 0.85 and any(
scores[LABELS.index(l)] > thresholds[l] * 0.8 # Scale down thresholds for neutral sentiment
for l in ["control", "blame shifting", "insults", "guilt tripping"] # Consider more labels
):
sentiment = "undermining" # Only override if multiple patterns are present with moderate confidence
elif sentiment_score > 0.35: # Increased threshold
sentiment = "undermining"
else:
sentiment = "supportive"
# Reduce minimum score and threshold for activation
if any(score > 0.9 for _, score, _ in matched_scores): # Higher threshold
base_score = max(base_score, 75.0) # Reduced
elif any(score > 0.7 for _, score, _ in matched_scores): # Moderate threshold
base_score = max(base_score, 60.0) # Reduced
return min(round(base_score, 1), 100.0)
@lru_cache(maxsize=1024) # Cache results for performance
def analyze_single_message(text, thresholds):
print("⚑ ENTERED analyze_single_message")
stage = 1
motif_hits, matched_phrases = detect_motifs(text)
# Get emotion profile
emotion_profile = get_emotion_profile(text)
sentiment_score = emotion_profile.get("anger", 0) + emotion_profile.get("disgust", 0)
# Get model scores
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
# Sentiment override
if emotion_profile.get("neutral", 0) > 0.85 and any(
scores[LABELS.index(l)] > thresholds[l] * 0.8 # Scale down thresholds for neutral sentiment
for l in ["control", "blame shifting", "insults", "guilt tripping"] # Consider more labels
):
sentiment = "undermining" # Only override if multiple patterns are present with moderate confidence
elif sentiment_score > 0.35: # Increased threshold
sentiment = "undermining"
else:
sentiment = "supportive"
weapon_flag = detect_weapon_language(text)
adjusted_thresholds = {
k: v + 0.05 if sentiment == "supportive" else v
for k, v in thresholds.items()
}
darvo_score = predict_darvo_score(text)
threshold_labels = [
label for label, score in zip(LABELS, scores)
if score > adjusted_thresholds[label]
]
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
if not threshold_labels:
return 0.0, [], [], {"label": sentiment}, 1, 0.0, None
top_patterns = sorted(
[(label, score) for label, score in zip(LABELS, scores)],
key=lambda x: x[1],
reverse=True
)[:2]
# Abuse score
abuse_score = compute_abuse_score(matched_scores, sentiment) # Calculate before adjustments
if weapon_flag:
abuse_score = min(abuse_score + 25, 100) # Apply weapon adjustment directly to abuse_score
if stage < 2:
stage = 2
abuse_score = min(abuse_score, 100 if "control" in threshold_labels else 95) # Apply cap after weapon adjustment
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, abuse_score)
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
if not threshold_labels:
return 0.0, [], [], {"label": sentiment}, 1, 0.0, None
# Remove recovery tag if tone is fake
if "recovery" in threshold_labels and tone_tag == "forced accountability flip":
threshold_labels.remove("recovery")
top_patterns = [p for p in top_patterns if p[0] != "recovery"]
print("⚠️ Removing 'recovery' due to undermining sentiment (not genuine repair)")
# Override profanity/anger for short texts
profane_words = {"fuck", "fucking", "bitch", "shit", "cunt", "ho", "asshole", "dick", "whore", "slut"}
tokens = set(text.lower().split())
has_profane = any(word in tokens for word in profane_words)
short_text = len(tokens) <= 10
anger_score = emotion_profile.get("anger", 0)
if has_profane and anger_score > 0.75 and short_text:
print("⚠️ Profanity + Anger Override Triggered")
insult_score = next((s for l, s in top_patterns if l == "insults"), 0)
if ("insults", insult_score) not in top_patterns:
top_patterns = [("insults", insult_score)] + top_patterns
if "insults" not in threshold_labels:
threshold_labels.append("insults")
# Debug
print(f"Emotional Tone Tag: {tone_tag}")
print("Emotion Profile:")
for emotion, score in emotion_profile.items():
print(f" {emotion.capitalize():10}: {score}")
print("\n--- Debug Info ---")
print(f"Text: {text}")
print(f"Sentiment (via emotion): {sentiment} (score: {round(sentiment_score, 3)})")
print("Abuse Pattern Scores:")
for label, score in zip(LABELS, scores):
passed = "βœ…" if score > adjusted_thresholds[label] else "❌"
print(f" {label:25} β†’ {score:.3f} {passed}")
print(f"Matched for score: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
print("------------------\n")
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
@spaces.GPU
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
from collections import Counter
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
if none_selected:
escalation_score = 0
escalation_note = "Checklist completed: no danger items reported."
escalation_completed = True
elif responses_checked:
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
escalation_note = "Checklist completed."
escalation_completed = True
else:
escalation_score = None
escalation_note = "Checklist not completed."
escalation_completed = False
messages = [msg1, msg2, msg3]
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
if not active:
return "Please enter at least one message.", None
# Flag any threat phrases present in the messages
import re
def normalize(text):
import unicodedata
text = text.lower().strip()
text = unicodedata.normalize("NFKD", text) # handles curly quotes
text = text.replace("’", "'") # smart to straight
return re.sub(r"[^a-z0-9 ]", "", text)
def detect_threat_motifs(message, motif_list):
norm_msg = normalize(message)
return [
motif for motif in motif_list
if normalize(motif) in norm_msg
]
# Collect matches per message
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
flat_threats = [t for sublist in immediate_threats for t in sublist]
threat_risk = "Yes" if flat_threats else "No"
results = [(analyze_single_message(m.lower(), THRESHOLDS.copy()), d) for m, d in active]
abuse_scores = [r[0][0] for r in results]
stages = [r[0][4] for r in results]
darvo_scores = [r[0][5] for r in results]
tone_tags = [r[0][6] for r in results]
dates_used = [r[1] for r in results]
predicted_labels = [label for r in results for label, _ in r[0][2]]
high = {'control'}
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 'contradictory statements', 'guilt tripping'}
low = {'blame shifting', 'projection', 'recovery phase'}
counts = {'high': 0, 'moderate': 0, 'low': 0}
for label in predicted_labels:
if label in high:
counts['high'] += 1
elif label in moderate:
counts['moderate'] += 1
elif label in low:
counts['low'] += 1
# Pattern escalation logic
pattern_escalation_risk = "Low"
if counts['high'] >= 2 and counts['moderate'] >= 2:
pattern_escalation_risk = "Critical"
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or (counts['moderate'] >= 3) or (counts['high'] >= 1 and counts['moderate'] >= 2):
pattern_escalation_risk = "High"
elif (counts['moderate'] == 2) or (counts['high'] == 1 and counts['moderate'] == 1) or (counts['moderate'] == 1 and counts['low'] >= 2) or (counts['high'] == 1 and sum(counts.values()) == 1):
pattern_escalation_risk = "Moderate"
checklist_escalation_risk = "Unknown" if escalation_score is None else (
"Critical" if escalation_score >= 20 else
"Moderate" if escalation_score >= 10 else
"Low"
)
escalation_bump = 0
for result, _ in results:
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
if darvo_score > 0.65:
escalation_bump += 3
if tone_tag in ["forced accountability flip", "emotional threat"]:
escalation_bump += 2
if abuse_score > 80:
escalation_bump += 2
if stage == 2:
escalation_bump += 3
def rank(label):
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
escalation_risk = (
"Critical" if combined_score >= 6 else
"High" if combined_score >= 4 else
"Moderate" if combined_score >= 2 else
"Low"
)
none_selected_checked = answers_and_none[-1]
responses_checked = any(answers_and_none[:-1])
none_selected = not responses_checked and none_selected_checked
# Determine escalation_score
if none_selected:
escalation_score = 0
escalation_completed = True
elif responses_checked:
escalation_score = sum(
w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a
)
escalation_completed = True
else:
escalation_score = None
escalation_completed = False
# Build escalation_text and hybrid_score
if escalation_score is None:
escalation_text = (
"🚫 **Escalation Potential: Unknown** (Checklist not completed)\n"
"⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
)
hybrid_score = 0
elif escalation_score == 0:
escalation_text = (
"βœ… **Escalation Checklist Completed:** No danger items reported.\n"
"🧭 **Escalation potential estimated from detected message patterns only.**\n"
f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
f"β€’ Checklist Risk: None reported\n"
f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
hybrid_score = escalation_bump
else:
hybrid_score = escalation_score + escalation_bump
escalation_text = (
f"πŸ“ˆ **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
"πŸ“‹ This score combines your safety checklist answers *and* detected high-risk behavior.\n"
f"β€’ Pattern Risk: {pattern_escalation_risk}\n"
f"β€’ Checklist Risk: {checklist_escalation_risk}\n"
f"β€’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
)
# Composite Abuse Score (weighted average based on message length)
composite_abuse_scores = []
message_lengths = [len(m.split()) for m, _ in active]
total_length = sum(message_lengths)
for result, length in zip(results, message_lengths):
abuse_score = result[0][0]
weight = length / total_length if total_length > 0 else 1 / len(results) if len(results) > 0 else 1
composite_abuse_scores.append(abuse_score * weight)
composite_abuse = int(round(sum(composite_abuse_scores)))
most_common_stage = max(set(stages), key=stages.count)
stage_text = RISK_STAGE_LABELS[most_common_stage]
# Derive top label list for each message
# safe derive top_labels
top_labels = []
for result, _ in results:
threshold_labels = result[1]
top_patterns = result[2]
if threshold_labels:
top_labels.append(threshold_labels[0])
elif top_patterns:
top_labels.append(top_patterns[0][0])
else:
top_labels.append("none") # or whatever default you prefer
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
darvo_blurb = ""
if avg_darvo > 0.25:
level = "moderate" if avg_darvo < 0.65 else "high"
darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** β†’ This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
out = f"Abuse Intensity: {composite_abuse}%\n"
out += "πŸ“Š This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
out += generate_risk_snippet(composite_abuse, top_labels[0], hybrid_score, most_common_stage)
out += f"\n\n{stage_text}"
out += darvo_blurb
out += "\n\n🎭 **Emotional Tones Detected:**\n"
for i, tone in enumerate(tone_tags):
out += f"β€’ Message {i+1}: *{tone or 'none'}*\n"
# --- Add Immediate Danger Threats section
if flat_threats:
out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
for t in set(flat_threats):
out += f"β€’ \"{t}\"\n"
out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
else:
out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
out += "This does *not* rule out risk, but no direct threat phrases were matched."
pattern_labels = [
pats[0][0] if (pats := r[0][2]) else "none"
for r in results
]
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, top_labels)
out += "\n\n" + escalation_text
return out, timeline_image
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
none_box = gr.Checkbox(label="None of the above")
# ─── FINAL β€œFORCE LAUNCH” (no guards) ────────────────────────
demo = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + quiz_boxes + [none_box],
outputs=[
gr.Textbox(label="Results"),
gr.Image(label="Abuse Score Timeline", type="pil")
],
title="Abuse Pattern Detector + Escalation Quiz",
description=(
"Enter up to three messages that concern you. "
"For the most accurate results, include messages from a recent emotionally intense period."
),
flagging_mode="manual"
)
# This single call will start the server and block,
# keeping the container alive on Spaces.
demo.launch()