Tether / app.py
SamanthaStorm's picture
Update app.py
e032990 verified
raw
history blame
6.97 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
from abuse_type_mapping import determine_abuse_type
# custom fine-tuned sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
# Load abuse pattern model
model_name = "SamanthaStorm/autotrain-c1un8-p8vzo"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive",
"suicidal_threat", "physical_threat", "extreme_control"
]
THRESHOLDS = {
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.30
}
PATTERN_LABELS = LABELS[:15]
DANGER_LABELS = LABELS[15:18]
EXPLANATIONS = {
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
"projection": "Projection involves accusing the victim of behaviors the abuser exhibits.",
"dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.",
"mockery": "Mockery ridicules someone in a hurtful, humiliating way.",
"recovery_phase": "Recovery phase dismisses someone's emotional healing process.",
"insults": "Insults are derogatory remarks aimed at degrading someone.",
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
"deflection": "Deflection avoids accountability by redirecting blame.",
"control": "Control restricts autonomy through manipulation or coercion.",
"extreme_control": "Extreme control dominates decisions and behaviors entirely.",
"physical_threat": "Physical threats signal risk of bodily harm.",
"suicidal_threat": "Suicidal threats manipulate others using self-harm threats.",
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
"manipulation": "Manipulation deceives to influence or control outcomes.",
"non_abusive": "Non-abusive language is respectful and free of coercion.",
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
}
PATTERN_WEIGHTS = {
"physical_threat": 1.5,
"suicidal_threat": 1.4,
"extreme_control": 1.5,
"gaslighting": 1.3,
"control": 1.2,
"dismissiveness": 0.8,
"non_abusive": 0.0
}
def custom_sentiment(text):
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label_idx = torch.argmax(probs).item()
label_map = {0: "supportive", 1: "undermining"}
return {"label": label_map[label_idx], "score": probs[0][label_idx].item()}
def calculate_abuse_level(scores, thresholds, motif_hits=None):
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
motif_hits = motif_hits or []
if any(label in motif_hits for label in {"physical_threat", "suicidal_threat", "extreme_control"}):
base_score = max(base_score, 75.0)
return base_score
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
return "Very Low / Likely Safe"
def analyze_single_message(text, thresholds, motif_flags):
motif_hits, matched_phrases = detect_motifs(text)
sentiment = custom_sentiment(text)
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
threshold_labels = [label for label, score in zip(PATTERN_LABELS, scores[:15]) if score > adjusted_thresholds[label]]
phrase_labels = [label for label, _ in matched_phrases]
pattern_labels_used = list(set(threshold_labels + phrase_labels))
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
abuse_description = interpret_abuse_level(abuse_level)
top_patterns = sorted([(label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive"], key=lambda x: x[1], reverse=True)[:2]
pattern_expl = "\n".join([f"• {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label)}" for label, _ in top_patterns])
return abuse_level, abuse_description, pattern_expl
def analyze_composite(msg1, msg2, msg3, flags):
thresholds = THRESHOLDS
results = [analyze_single_message(m, thresholds, flags) for m in [msg1, msg2, msg3] if m.strip()]
if not results:
return "Please enter at least one message."
result_lines = []
total_score = 0
for i, (score, desc, patterns) in enumerate(results, 1):
total_score += score
result_lines.append(f"Message {i}: {score:.2f}% – {desc}\n{patterns}\n")
composite = round(total_score / len(results), 2)
result_lines.append(f"\nComposite Abuse Score: {composite}%")
return "\n\n".join(result_lines)
txt_inputs = [
gr.Textbox(label="Message 1"),
gr.Textbox(label="Message 2"),
gr.Textbox(label="Message 3")
]
checkboxes = gr.CheckboxGroup(label="Contextual Flags", choices=[
"They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
"They monitor/follow me", "I feel unsafe when alone with them"
])
iface = gr.Interface(
fn=analyze_composite,
inputs=txt_inputs + [checkboxes],
outputs=gr.Textbox(label="Results"),
title="Abuse Pattern Detector (Multi-Message)",
allow_flagging="manual"
)
if __name__ == "__main__":
iface.launch()