Tether / app.py
SamanthaStorm's picture
Update app.py
688cd9f verified
raw
history blame
7.84 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import tag_motifs
# custom fine-tuned sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
# Load abuse pattern model
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive",
"suicidal_threat", "physical_threat", "extreme_control"
]
THRESHOLDS = {
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.30, "control": 0.43, "guilt_tripping": 0.19,
"apology_baiting": 0.45, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.36
}
PATTERN_LABELS = LABELS[:15]
DANGER_LABELS = LABELS[15:18]
EXPLANATIONS = {
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
"projection": "Projection involves accusing the victim of behaviors the abuser exhibits.",
"dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.",
"mockery": "Mockery ridicules someone in a hurtful, humiliating way.",
"recovery_phase": "Recovery phase dismisses someone's emotional healing process.",
"insults": "Insults are derogatory remarks aimed at degrading someone.",
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
"deflection": "Deflection avoids accountability by redirecting blame.",
"control": "Control restricts autonomy through manipulation or coercion.",
"extreme_control": "Extreme control dominates decisions and behaviors entirely.",
"physical_threat": "Physical threats signal risk of bodily harm.",
"suicidal_threat": "Suicidal threats manipulate others using self-harm threats.",
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
"manipulation": "Manipulation deceives to influence or control outcomes.",
"non_abusive": "Non-abusive language is respectful and free of coercion.",
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
}
def custom_sentiment(text):
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label_idx = torch.argmax(probs).item()
label_map = {0: "supportive", 1: "undermining"}
label = label_map[label_idx]
score = probs[0][label_idx].item()
return {"label": label, "score": score}
def calculate_abuse_level(scores, thresholds):
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
return round(np.mean(triggered_scores) * 100, 2) if triggered_scores else 0.0
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
return "Very Low / Likely Safe"
def analyze_messages(input_text, risk_flags):
input_text = input_text.strip()
if not input_text:
return "Please enter a message for analysis."
motif_tags, matched_phrases = tag_motifs(input_text)
contextual_flags = risk_flags + motif_tags # Combine checkbox and motif flags
sentiment = custom_sentiment(input_text)
sentiment_label = sentiment['label']
sentiment_score = sentiment['score']
adjusted_thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment_label == "undermining" else THRESHOLDS.copy()
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15]))
danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:18]))
contextual_flags = risk_flags if risk_flags else []
if len(contextual_flags) >= 2:
danger_flag_count += 1
critical_flags = ["They've threatened harm", "They monitor/follow me", "I feel unsafe when alone with them"]
high_risk_context = any(flag in contextual_flags for flag in critical_flags)
non_abusive_score = scores[LABELS.index('non_abusive')]
if non_abusive_score > adjusted_thresholds['non_abusive']:
return "This message is classified as non-abusive."
abuse_level = calculate_abuse_level(scores, adjusted_thresholds)
abuse_description = interpret_abuse_level(abuse_level)
if danger_flag_count >= 2:
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
else:
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
scored_patterns = [
(label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive"
]
top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]
top_pattern_explanations = "\n".join([
f"• {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}"
for label, _ in top_patterns
])
result = (
f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n"
f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
"Resources: " + resources + "\n\n"
f"Sentiment: {sentiment_label.title()} (Confidence: {sentiment_score*100:.2f}%)"
)
if contextual_flags:
result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag}" for flag in contextual_flags])
if high_risk_context:
result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources."
if matched_phrases:
result += "\n\n🧠 Detected High-Risk Language:\n"
for label, pattern in matched_phrases:
result += f"• {label.replace('_', ' ').title()} phrase matched\n"
return result
iface = gr.Interface(
fn=analyze_messages,
inputs=[
gr.Textbox(lines=10, placeholder="Enter message here..."),
gr.CheckboxGroup(label="Do any of these apply to your situation?", choices=[
"They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
"They monitor/follow me", "I feel unsafe when alone with them"
])
],
outputs=[gr.Textbox(label="Analysis Result")],
title="Abuse Pattern Detector",
live=True
)
if __name__ == "__main__":
iface.queue().launch()