Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,10 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load model and tokenizer with trust_remote_code in case it's needed
|
| 7 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
|
@@ -83,7 +87,18 @@ def analyze_messages(input_text):
|
|
| 83 |
input_text = input_text.strip()
|
| 84 |
if not input_text:
|
| 85 |
return "Please enter a message for analysis.", None
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
# Tokenize input and generate model predictions
|
| 88 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
| 89 |
with torch.no_grad():
|
|
@@ -91,8 +106,14 @@ def analyze_messages(input_text):
|
|
| 91 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
| 92 |
|
| 93 |
# Count the number of triggered abuse pattern and danger flags based on thresholds
|
| 94 |
-
pattern_count = sum(score >
|
| 95 |
-
danger_flag_count = sum(score >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# Build formatted raw score display
|
| 98 |
score_lines = [
|
|
@@ -127,6 +148,7 @@ def analyze_messages(input_text):
|
|
| 127 |
"It flags communication patterns associated with increased risk of severe harm. "
|
| 128 |
"For more info, consider reaching out to support groups or professionals.\n\n"
|
| 129 |
f"Resources: {resources}"
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
# Return both a text summary and a JSON-like dict of scores per label
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
| 4 |
import numpy as np
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
|
| 7 |
+
# Load sentiment analysis model
|
| 8 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
| 9 |
|
| 10 |
# Load model and tokenizer with trust_remote_code in case it's needed
|
| 11 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
|
|
|
| 87 |
input_text = input_text.strip()
|
| 88 |
if not input_text:
|
| 89 |
return "Please enter a message for analysis.", None
|
| 90 |
+
|
| 91 |
+
# Sentiment analysis
|
| 92 |
+
sentiment = sentiment_analyzer(input_text)[0] # Sentiment result
|
| 93 |
+
sentiment_label = sentiment['label']
|
| 94 |
+
sentiment_score = sentiment['score']
|
| 95 |
+
|
| 96 |
+
# Adjust thresholds based on sentiment
|
| 97 |
+
adjusted_thresholds = THRESHOLDS.copy()
|
| 98 |
+
if sentiment_label == "NEGATIVE":
|
| 99 |
+
# Lower thresholds for negative sentiment
|
| 100 |
+
adjusted_thresholds = {key: val * 0.8 for key, val in THRESHOLDS.items()} # Example adjustment
|
| 101 |
+
|
| 102 |
# Tokenize input and generate model predictions
|
| 103 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
| 104 |
with torch.no_grad():
|
|
|
|
| 106 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
| 107 |
|
| 108 |
# Count the number of triggered abuse pattern and danger flags based on thresholds
|
| 109 |
+
pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
|
| 110 |
+
danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[14:17]))
|
| 111 |
+
|
| 112 |
+
# Check if 'non_abusive' label is triggered
|
| 113 |
+
non_abusive_score = scores[LABELS.index('non_abusive')]
|
| 114 |
+
if non_abusive_score > adjusted_thresholds['non_abusive']:
|
| 115 |
+
# If non-abusive threshold is met, return a non-abusive classification
|
| 116 |
+
return "This message is classified as non-abusive."
|
| 117 |
|
| 118 |
# Build formatted raw score display
|
| 119 |
score_lines = [
|
|
|
|
| 148 |
"It flags communication patterns associated with increased risk of severe harm. "
|
| 149 |
"For more info, consider reaching out to support groups or professionals.\n\n"
|
| 150 |
f"Resources: {resources}"
|
| 151 |
+
f"Sentiment: {sentiment_label} (Confidence: {sentiment_score*100:.2f}%)"
|
| 152 |
)
|
| 153 |
|
| 154 |
# Return both a text summary and a JSON-like dict of scores per label
|