Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,10 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load model and tokenizer with trust_remote_code in case it's needed
|
7 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
@@ -83,7 +87,18 @@ def analyze_messages(input_text):
|
|
83 |
input_text = input_text.strip()
|
84 |
if not input_text:
|
85 |
return "Please enter a message for analysis.", None
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
# Tokenize input and generate model predictions
|
88 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
89 |
with torch.no_grad():
|
@@ -91,8 +106,14 @@ def analyze_messages(input_text):
|
|
91 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
92 |
|
93 |
# Count the number of triggered abuse pattern and danger flags based on thresholds
|
94 |
-
pattern_count = sum(score >
|
95 |
-
danger_flag_count = sum(score >
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Build formatted raw score display
|
98 |
score_lines = [
|
@@ -127,6 +148,7 @@ def analyze_messages(input_text):
|
|
127 |
"It flags communication patterns associated with increased risk of severe harm. "
|
128 |
"For more info, consider reaching out to support groups or professionals.\n\n"
|
129 |
f"Resources: {resources}"
|
|
|
130 |
)
|
131 |
|
132 |
# Return both a text summary and a JSON-like dict of scores per label
|
|
|
2 |
import torch
|
3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
4 |
import numpy as np
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# Load sentiment analysis model
|
8 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
9 |
|
10 |
# Load model and tokenizer with trust_remote_code in case it's needed
|
11 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
|
|
87 |
input_text = input_text.strip()
|
88 |
if not input_text:
|
89 |
return "Please enter a message for analysis.", None
|
90 |
+
|
91 |
+
# Sentiment analysis
|
92 |
+
sentiment = sentiment_analyzer(input_text)[0] # Sentiment result
|
93 |
+
sentiment_label = sentiment['label']
|
94 |
+
sentiment_score = sentiment['score']
|
95 |
+
|
96 |
+
# Adjust thresholds based on sentiment
|
97 |
+
adjusted_thresholds = THRESHOLDS.copy()
|
98 |
+
if sentiment_label == "NEGATIVE":
|
99 |
+
# Lower thresholds for negative sentiment
|
100 |
+
adjusted_thresholds = {key: val * 0.8 for key, val in THRESHOLDS.items()} # Example adjustment
|
101 |
+
|
102 |
# Tokenize input and generate model predictions
|
103 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
104 |
with torch.no_grad():
|
|
|
106 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
107 |
|
108 |
# Count the number of triggered abuse pattern and danger flags based on thresholds
|
109 |
+
pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
|
110 |
+
danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[14:17]))
|
111 |
+
|
112 |
+
# Check if 'non_abusive' label is triggered
|
113 |
+
non_abusive_score = scores[LABELS.index('non_abusive')]
|
114 |
+
if non_abusive_score > adjusted_thresholds['non_abusive']:
|
115 |
+
# If non-abusive threshold is met, return a non-abusive classification
|
116 |
+
return "This message is classified as non-abusive."
|
117 |
|
118 |
# Build formatted raw score display
|
119 |
score_lines = [
|
|
|
148 |
"It flags communication patterns associated with increased risk of severe harm. "
|
149 |
"For more info, consider reaching out to support groups or professionals.\n\n"
|
150 |
f"Resources: {resources}"
|
151 |
+
f"Sentiment: {sentiment_label} (Confidence: {sentiment_score*100:.2f}%)"
|
152 |
)
|
153 |
|
154 |
# Return both a text summary and a JSON-like dict of scores per label
|