Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -183,8 +183,7 @@ def analyze_single_message(text, thresholds):
|
|
183 |
}
|
184 |
|
185 |
contradiction_flag = detect_contradiction(text)
|
186 |
-
|
187 |
-
)
|
188 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
189 |
with torch.no_grad():
|
190 |
outputs = model(**inputs)
|
@@ -193,15 +192,17 @@ def analyze_single_message(text, thresholds):
|
|
193 |
threshold_labels = [
|
194 |
label for label, score in zip(LABELS, scores)
|
195 |
if score > adjusted_thresholds[label]
|
196 |
-
|
|
|
197 |
motifs = [phrase for _, phrase in matched_phrases]
|
|
|
198 |
darvo_score = calculate_darvo_score(
|
199 |
-
|
200 |
sentiment_before=0.0,
|
201 |
sentiment_after=sentiment_score,
|
202 |
motifs_found=motifs,
|
203 |
contradiction_flag=contradiction_flag
|
204 |
-
|
205 |
top_patterns = sorted(
|
206 |
[(label, score) for label, score in zip(LABELS, scores)],
|
207 |
key=lambda x: x[1],
|
@@ -273,7 +274,7 @@ def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
|
273 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
274 |
out += f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
275 |
|
276 |
-
return out
|
277 |
|
278 |
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
279 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
|
|
183 |
}
|
184 |
|
185 |
contradiction_flag = detect_contradiction(text)
|
186 |
+
|
|
|
187 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
188 |
with torch.no_grad():
|
189 |
outputs = model(**inputs)
|
|
|
192 |
threshold_labels = [
|
193 |
label for label, score in zip(LABELS, scores)
|
194 |
if score > adjusted_thresholds[label]
|
195 |
+
]
|
196 |
+
|
197 |
motifs = [phrase for _, phrase in matched_phrases]
|
198 |
+
|
199 |
darvo_score = calculate_darvo_score(
|
200 |
+
threshold_labels,
|
201 |
sentiment_before=0.0,
|
202 |
sentiment_after=sentiment_score,
|
203 |
motifs_found=motifs,
|
204 |
contradiction_flag=contradiction_flag
|
205 |
+
)
|
206 |
top_patterns = sorted(
|
207 |
[(label, score) for label, score in zip(LABELS, scores)],
|
208 |
key=lambda x: x[1],
|
|
|
274 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
275 |
out += f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
276 |
|
277 |
+
return out
|
278 |
|
279 |
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
280 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|