Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,6 +55,35 @@ PATTERN_WEIGHTS = {
|
|
| 55 |
"contradictory_statements": 0.75,
|
| 56 |
}
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
def custom_sentiment(text):
|
| 59 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 60 |
with torch.no_grad():
|
|
@@ -84,17 +113,27 @@ def interpret_abuse_level(score):
|
|
| 84 |
def analyze_single_message(text, thresholds, motif_flags):
|
| 85 |
motif_hits, matched_phrases = detect_motifs(text)
|
| 86 |
sentiment = custom_sentiment(text)
|
|
|
|
|
|
|
| 87 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
|
|
|
| 88 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model(**inputs)
|
| 91 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
|
|
|
| 92 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
| 93 |
phrase_labels = [label for label, _ in matched_phrases]
|
| 94 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
|
|
|
| 95 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
|
|
|
| 96 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def analyze_composite(msg1, msg2, msg3, flags):
|
| 100 |
thresholds = THRESHOLDS
|
|
@@ -104,7 +143,10 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
| 104 |
return "Please enter at least one message."
|
| 105 |
|
| 106 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
| 107 |
-
abuse_scores = [r[0] for r in results
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
| 110 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
|
@@ -131,11 +173,19 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
| 131 |
|
| 132 |
composite_score = round(min(composite_score, 100), 2) # re-cap just in case
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
for expl in top_explanations:
|
| 136 |
if expl:
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
textbox_inputs = [
|
| 141 |
gr.Textbox(label="Message 1"),
|
|
|
|
| 55 |
"contradictory_statements": 0.75,
|
| 56 |
}
|
| 57 |
|
| 58 |
+
# --- DARVO Detection Tools ---
|
| 59 |
+
DARVO_PATTERNS = {
|
| 60 |
+
"blame shifting", "projection", "mockery", "dismissiveness", "deflection", "guilt tripping"
|
| 61 |
+
}
|
| 62 |
+
DARVO_MOTIFS = [
|
| 63 |
+
"i guess i’m the bad guy", "after everything i’ve done", "you always twist everything",
|
| 64 |
+
"so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen",
|
| 65 |
+
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
| 69 |
+
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
|
| 70 |
+
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
| 71 |
+
|
| 72 |
+
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
| 73 |
+
|
| 74 |
+
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
| 75 |
+
motif_score = motif_hits / len(DARVO_MOTIFS)
|
| 76 |
+
|
| 77 |
+
contradiction_score = 1.0 if contradiction_flag else 0.0
|
| 78 |
+
|
| 79 |
+
darvo_score = (
|
| 80 |
+
0.3 * pattern_score +
|
| 81 |
+
0.3 * sentiment_shift_score +
|
| 82 |
+
0.2 * motif_score +
|
| 83 |
+
0.2 * contradiction_score
|
| 84 |
+
)
|
| 85 |
+
return round(min(darvo_score, 1.0), 3)
|
| 86 |
+
|
| 87 |
def custom_sentiment(text):
|
| 88 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 89 |
with torch.no_grad():
|
|
|
|
| 113 |
def analyze_single_message(text, thresholds, motif_flags):
|
| 114 |
motif_hits, matched_phrases = detect_motifs(text)
|
| 115 |
sentiment = custom_sentiment(text)
|
| 116 |
+
sentiment_score = sentiment["score"] if sentiment["label"] == "undermining" else 0.0
|
| 117 |
+
|
| 118 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
| 119 |
+
|
| 120 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 121 |
with torch.no_grad():
|
| 122 |
outputs = model(**inputs)
|
| 123 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
| 124 |
+
|
| 125 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
| 126 |
phrase_labels = [label for label, _ in matched_phrases]
|
| 127 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
| 128 |
+
|
| 129 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
| 130 |
+
|
| 131 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
| 132 |
+
|
| 133 |
+
motif_phrases = [text for _, text in matched_phrases]
|
| 134 |
+
darvo_score = calculate_darvo_score(pattern_labels_used, 0.0, sentiment_score, motif_phrases, contradiction_flag=False)
|
| 135 |
+
|
| 136 |
+
return abuse_level, pattern_labels_used, top_patterns, darvo_score
|
| 137 |
|
| 138 |
def analyze_composite(msg1, msg2, msg3, flags):
|
| 139 |
thresholds = THRESHOLDS
|
|
|
|
| 143 |
return "Please enter at least one message."
|
| 144 |
|
| 145 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
| 146 |
+
abuse_scores = [r[0] for r in results
|
| 147 |
+
darvo_scores = [r[3] for r in results]
|
| 148 |
+
average_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
| 149 |
+
print(f"Average DARVO Score: {average_darvo}")
|
| 150 |
|
| 151 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
| 152 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
|
|
|
| 173 |
|
| 174 |
composite_score = round(min(composite_score, 100), 2) # re-cap just in case
|
| 175 |
|
| 176 |
+
result = f"These messages show patterns of {', '.join(label for label, _ in top_labels)} and are estimated to be {composite_score}% likely abusive."
|
| 177 |
+
|
| 178 |
+
# Include pattern explanations
|
| 179 |
for expl in top_explanations:
|
| 180 |
if expl:
|
| 181 |
+
result += f"\n• {expl}"
|
| 182 |
+
|
| 183 |
+
# Show DARVO score
|
| 184 |
+
if average_darvo > 0.25:
|
| 185 |
+
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
| 186 |
+
result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
| 187 |
+
|
| 188 |
+
return result
|
| 189 |
|
| 190 |
textbox_inputs = [
|
| 191 |
gr.Textbox(label="Message 1"),
|