Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -55,6 +55,35 @@ PATTERN_WEIGHTS = {
|
|
55 |
"contradictory_statements": 0.75,
|
56 |
}
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def custom_sentiment(text):
|
59 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
60 |
with torch.no_grad():
|
@@ -84,17 +113,27 @@ def interpret_abuse_level(score):
|
|
84 |
def analyze_single_message(text, thresholds, motif_flags):
|
85 |
motif_hits, matched_phrases = detect_motifs(text)
|
86 |
sentiment = custom_sentiment(text)
|
|
|
|
|
87 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
|
|
88 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
89 |
with torch.no_grad():
|
90 |
outputs = model(**inputs)
|
91 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
|
|
92 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
93 |
phrase_labels = [label for label, _ in matched_phrases]
|
94 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
|
|
95 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
|
|
96 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def analyze_composite(msg1, msg2, msg3, flags):
|
100 |
thresholds = THRESHOLDS
|
@@ -104,7 +143,10 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
104 |
return "Please enter at least one message."
|
105 |
|
106 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
107 |
-
abuse_scores = [r[0] for r in results
|
|
|
|
|
|
|
108 |
|
109 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
110 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
@@ -131,11 +173,19 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
131 |
|
132 |
composite_score = round(min(composite_score, 100), 2) # re-cap just in case
|
133 |
|
134 |
-
|
|
|
|
|
135 |
for expl in top_explanations:
|
136 |
if expl:
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
textbox_inputs = [
|
141 |
gr.Textbox(label="Message 1"),
|
|
|
55 |
"contradictory_statements": 0.75,
|
56 |
}
|
57 |
|
58 |
+
# --- DARVO Detection Tools ---
|
59 |
+
DARVO_PATTERNS = {
|
60 |
+
"blame shifting", "projection", "mockery", "dismissiveness", "deflection", "guilt tripping"
|
61 |
+
}
|
62 |
+
DARVO_MOTIFS = [
|
63 |
+
"i guess i’m the bad guy", "after everything i’ve done", "you always twist everything",
|
64 |
+
"so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen",
|
65 |
+
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
66 |
+
]
|
67 |
+
|
68 |
+
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
69 |
+
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
|
70 |
+
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
71 |
+
|
72 |
+
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
73 |
+
|
74 |
+
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
75 |
+
motif_score = motif_hits / len(DARVO_MOTIFS)
|
76 |
+
|
77 |
+
contradiction_score = 1.0 if contradiction_flag else 0.0
|
78 |
+
|
79 |
+
darvo_score = (
|
80 |
+
0.3 * pattern_score +
|
81 |
+
0.3 * sentiment_shift_score +
|
82 |
+
0.2 * motif_score +
|
83 |
+
0.2 * contradiction_score
|
84 |
+
)
|
85 |
+
return round(min(darvo_score, 1.0), 3)
|
86 |
+
|
87 |
def custom_sentiment(text):
|
88 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
89 |
with torch.no_grad():
|
|
|
113 |
def analyze_single_message(text, thresholds, motif_flags):
|
114 |
motif_hits, matched_phrases = detect_motifs(text)
|
115 |
sentiment = custom_sentiment(text)
|
116 |
+
sentiment_score = sentiment["score"] if sentiment["label"] == "undermining" else 0.0
|
117 |
+
|
118 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
119 |
+
|
120 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
121 |
with torch.no_grad():
|
122 |
outputs = model(**inputs)
|
123 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
124 |
+
|
125 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
126 |
phrase_labels = [label for label, _ in matched_phrases]
|
127 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
128 |
+
|
129 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
130 |
+
|
131 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
132 |
+
|
133 |
+
motif_phrases = [text for _, text in matched_phrases]
|
134 |
+
darvo_score = calculate_darvo_score(pattern_labels_used, 0.0, sentiment_score, motif_phrases, contradiction_flag=False)
|
135 |
+
|
136 |
+
return abuse_level, pattern_labels_used, top_patterns, darvo_score
|
137 |
|
138 |
def analyze_composite(msg1, msg2, msg3, flags):
|
139 |
thresholds = THRESHOLDS
|
|
|
143 |
return "Please enter at least one message."
|
144 |
|
145 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
146 |
+
abuse_scores = [r[0] for r in results
|
147 |
+
darvo_scores = [r[3] for r in results]
|
148 |
+
average_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
149 |
+
print(f"Average DARVO Score: {average_darvo}")
|
150 |
|
151 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
152 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
|
|
173 |
|
174 |
composite_score = round(min(composite_score, 100), 2) # re-cap just in case
|
175 |
|
176 |
+
result = f"These messages show patterns of {', '.join(label for label, _ in top_labels)} and are estimated to be {composite_score}% likely abusive."
|
177 |
+
|
178 |
+
# Include pattern explanations
|
179 |
for expl in top_explanations:
|
180 |
if expl:
|
181 |
+
result += f"\n• {expl}"
|
182 |
+
|
183 |
+
# Show DARVO score
|
184 |
+
if average_darvo > 0.25:
|
185 |
+
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
186 |
+
result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
187 |
+
|
188 |
+
return result
|
189 |
|
190 |
textbox_inputs = [
|
191 |
gr.Textbox(label="Message 1"),
|