Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- abuse_type_mapping.py +46 -0
- app.py +25 -5
- gitattributes +35 -0
abuse_type_mapping.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def determine_abuse_type(detected_labels):
|
2 |
+
abuse_type = None
|
3 |
+
abuser_profile = None
|
4 |
+
advice = None
|
5 |
+
|
6 |
+
labels = set(detected_labels)
|
7 |
+
|
8 |
+
if {"extreme_control", "gaslighting", "dismissiveness", "physical_threat"} & labels:
|
9 |
+
abuse_type = "Intimate Terrorism"
|
10 |
+
abuser_profile = "Strategic and controlling"
|
11 |
+
advice = (
|
12 |
+
"This pattern reflects coercive control and potential ongoing abuse. "
|
13 |
+
"Formal support such as domestic violence programs, legal protection, or shelters are recommended. "
|
14 |
+
"Placating or confronting the abuser may increase danger."
|
15 |
+
)
|
16 |
+
|
17 |
+
elif {"mockery", "insults", "deflection", "blame_shifting"} & labels:
|
18 |
+
abuse_type = "Situational Couple Violence"
|
19 |
+
abuser_profile = "Emotionally reactive"
|
20 |
+
advice = (
|
21 |
+
"This may reflect escalated conflict without a long-term control pattern. "
|
22 |
+
"Boundary-setting and conflict de-escalation are key. Professional mediation or trauma-informed therapy may help."
|
23 |
+
)
|
24 |
+
|
25 |
+
elif {"control", "manipulation"}.issubset(labels) and "physical_threat" in labels:
|
26 |
+
abuse_type = "Mutual Violent Control"
|
27 |
+
abuser_profile = "Both partners using control"
|
28 |
+
advice = (
|
29 |
+
"This suggests high mutual danger. Professional separation guidance and safety planning are strongly advised."
|
30 |
+
)
|
31 |
+
|
32 |
+
elif {"physical_threat"} & labels and "extreme_control" not in labels:
|
33 |
+
abuse_type = "Violent Resistance"
|
34 |
+
abuser_profile = "Victim using defensive violence"
|
35 |
+
advice = (
|
36 |
+
"This may reflect a survivor reacting to coercion. Legal and psychological support may help clarify power dynamics."
|
37 |
+
)
|
38 |
+
|
39 |
+
elif {"gaslighting", "obscure_formal", "dismissiveness"} & labels and "physical_threat" not in labels:
|
40 |
+
abuse_type = "Nonviolent Coercive Control"
|
41 |
+
abuser_profile = "Controlling but covert"
|
42 |
+
advice = (
|
43 |
+
"This pattern involves emotional control without physical harm. Emotional validation, documentation, and external support are important."
|
44 |
+
)
|
45 |
+
|
46 |
+
return abuse_type, abuser_profile, advice
|
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
|
|
7 |
|
8 |
# custom fine-tuned sentiment model
|
9 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
@@ -75,6 +76,15 @@ def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
|
75 |
|
76 |
return base_score
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def interpret_abuse_level(score):
|
79 |
if score > 80:
|
80 |
return "Extreme / High Risk"
|
@@ -121,17 +131,21 @@ def analyze_messages(input_text, risk_flags):
|
|
121 |
if non_abusive_confident and danger_flag_count == 0 and not matched_phrases:
|
122 |
return "This message is classified as non-abusive."
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
abuse_description = interpret_abuse_level(abuse_level)
|
|
|
|
|
126 |
|
127 |
if danger_flag_count >= 2:
|
128 |
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
|
129 |
else:
|
130 |
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
|
131 |
-
|
132 |
-
scored_patterns = [
|
133 |
-
(label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive"
|
134 |
-
]
|
135 |
# Override top patterns if a high-risk motif was detected
|
136 |
override_labels = {"physical_threat", "suicidal_threat", "extreme_control"}
|
137 |
override_matches = [label for label, _ in matched_phrases if label in override_labels]
|
@@ -151,6 +165,7 @@ def analyze_messages(input_text, risk_flags):
|
|
151 |
|
152 |
if abuse_level >= 15:
|
153 |
result += f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
|
|
|
154 |
|
155 |
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
|
156 |
"Resources: " + resources + "\n\n"
|
@@ -169,6 +184,11 @@ def analyze_messages(input_text, risk_flags):
|
|
169 |
for label, phrase in matched_phrases:
|
170 |
phrase_clean = phrase.replace('"', "'").strip()
|
171 |
result += f"• {label.replace('_', ' ').title()}: “{phrase_clean}”\n"
|
|
|
|
|
|
|
|
|
|
|
172 |
return result
|
173 |
|
174 |
iface = gr.Interface(
|
|
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
7 |
+
from abuse_type_mapping import determine_abuse_type
|
8 |
|
9 |
# custom fine-tuned sentiment model
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
|
|
76 |
|
77 |
return base_score
|
78 |
|
79 |
+
# Boost score if high-risk motifs were detected
|
80 |
+
motif_hits = motif_hits or []
|
81 |
+
if any(label in motif_hits for label in {"physical_threat", "suicidal_threat", "extreme_control"}):
|
82 |
+
base_score = max(base_score, 75.0) # Push to "Severe / Harmful Pattern Present"
|
83 |
+
if matched_phrases:
|
84 |
+
pattern_labels_used.extend([label for label, _ in matched_phrases])
|
85 |
+
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits=[label for label, _ in matched_phrases])
|
86 |
+
return base_score
|
87 |
+
|
88 |
def interpret_abuse_level(score):
|
89 |
if score > 80:
|
90 |
return "Extreme / High Risk"
|
|
|
131 |
if non_abusive_confident and danger_flag_count == 0 and not matched_phrases:
|
132 |
return "This message is classified as non-abusive."
|
133 |
|
134 |
+
scored_patterns = [
|
135 |
+
(label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive"]
|
136 |
+
|
137 |
+
pattern_labels_used = [label for label, score in scored_patterns if score > adjusted_thresholds[label]]
|
138 |
+
|
139 |
+
abuse_level = calculate_abuse_level(scores, adjusted_thresholds)
|
140 |
abuse_description = interpret_abuse_level(abuse_level)
|
141 |
+
pattern_labels_used = [label for label, _ in matched_phrases]
|
142 |
+
abuse_type, abuser_profile, advice = determine_abuse_type(pattern_labels_used)
|
143 |
|
144 |
if danger_flag_count >= 2:
|
145 |
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
|
146 |
else:
|
147 |
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
|
148 |
+
|
|
|
|
|
|
|
149 |
# Override top patterns if a high-risk motif was detected
|
150 |
override_labels = {"physical_threat", "suicidal_threat", "extreme_control"}
|
151 |
override_matches = [label for label, _ in matched_phrases if label in override_labels]
|
|
|
165 |
|
166 |
if abuse_level >= 15:
|
167 |
result += f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
|
168 |
+
|
169 |
|
170 |
f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
|
171 |
"Resources: " + resources + "\n\n"
|
|
|
184 |
for label, phrase in matched_phrases:
|
185 |
phrase_clean = phrase.replace('"', "'").strip()
|
186 |
result += f"• {label.replace('_', ' ').title()}: “{phrase_clean}”\n"
|
187 |
+
|
188 |
+
if abuse_type:
|
189 |
+
result += f"\n\n🧠 Likely Abuse Type: {abuse_type}"
|
190 |
+
result += f"\n🧠 Abuser Profile: {abuser_profile}"
|
191 |
+
result += f"\n📘 Safety Tip: {advice}"
|
192 |
return result
|
193 |
|
194 |
iface = gr.Interface(
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|