Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
|
9 |
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
10 |
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
-
# Define
|
13 |
LABELS = [
|
14 |
"gaslighting", "mockery", "dismissiveness", "control",
|
15 |
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
@@ -17,120 +17,119 @@ LABELS = [
|
|
17 |
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat",
|
18 |
"extreme_control"
|
19 |
]
|
20 |
-
TOTAL_LABELS = 17
|
21 |
|
22 |
-
#
|
23 |
-
# - First 14 are abuse pattern categories
|
24 |
-
# - Last 3 are Danger Assessment cues
|
25 |
-
TOTAL_LABELS = 17
|
26 |
-
# Individual thresholds for each of the 17 labels
|
27 |
THRESHOLDS = {
|
28 |
"gaslighting": 0.15,
|
29 |
"mockery": 0.15,
|
30 |
-
"dismissiveness": 0.
|
31 |
-
"control": 0.
|
32 |
"guilt_tripping": 0.15,
|
33 |
"apology_baiting": 0.15,
|
34 |
"blame_shifting": 0.15,
|
35 |
-
"projection": 0.
|
36 |
"contradictory_statements": 0.15,
|
37 |
"manipulation": 0.15,
|
38 |
"deflection": 0.15,
|
39 |
-
"insults": 0.
|
40 |
-
"obscure_formal": 0.
|
41 |
"recovery_phase": 0.15,
|
42 |
-
"suicidal_threat": 0.
|
43 |
-
"physical_threat": 0.
|
44 |
-
"extreme_control": 0.
|
45 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def analyze_messages(input_text):
|
47 |
input_text = input_text.strip()
|
48 |
if not input_text:
|
49 |
-
return "Please enter a message for analysis."
|
50 |
|
51 |
-
# Tokenize
|
52 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
# Convert to probabilities
|
60 |
-
scores = torch.sigmoid(logits).numpy()
|
61 |
-
print("Scores:", scores)
|
62 |
-
print("Danger Scores:", scores[14:]) # suicidal, physical, extreme
|
63 |
|
64 |
-
|
65 |
-
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
if i < 14:
|
70 |
-
pattern_count += 1
|
71 |
-
else:
|
72 |
-
danger_flag_count += 1
|
73 |
-
|
74 |
-
# Optional debug print
|
75 |
-
for i, s in enumerate(scores):
|
76 |
-
print(LABELS[i], "=", round(s, 3))
|
77 |
-
|
78 |
-
danger_assessment = (
|
79 |
-
"High" if danger_flag_count >= 2 else
|
80 |
-
"Moderate" if danger_flag_count == 1 else
|
81 |
-
"Low"
|
82 |
-
)
|
83 |
-
# Treat high-scoring danger cues as abuse patterns as well
|
84 |
-
for danger_label in ["suicidal_threat", "physical_threat", "extreme_control"]:
|
85 |
-
if scores[LABELS.index(danger_label)] > THRESHOLDS[danger_label]:
|
86 |
-
pattern_count += 1
|
87 |
-
# Set resources
|
88 |
-
if danger_assessment == "High":
|
89 |
resources = (
|
90 |
-
"**Immediate Help:**
|
91 |
-
"**Crisis Support:** National DV Hotline β
|
92 |
-
"**Legal
|
93 |
-
"**Specialized
|
94 |
)
|
95 |
-
elif
|
96 |
resources = (
|
97 |
-
"**
|
98 |
-
"**Relationship
|
99 |
-
"**Support Chat:**
|
100 |
-
"**
|
101 |
)
|
102 |
else:
|
103 |
resources = (
|
104 |
-
"**
|
105 |
-
"**
|
106 |
-
"**Relationship Tools:**
|
107 |
-
"**
|
108 |
)
|
109 |
|
110 |
-
# Output
|
111 |
result_md = (
|
112 |
-
f"
|
113 |
-
f"**
|
|
|
|
|
|
|
114 |
)
|
115 |
|
|
|
116 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as f:
|
117 |
f.write(result_md)
|
118 |
report_path = f.name
|
119 |
|
120 |
return result_md, report_path
|
121 |
|
122 |
-
#
|
123 |
with gr.Blocks() as demo:
|
124 |
-
gr.Markdown("# Abuse Pattern Detector
|
125 |
-
gr.Markdown("
|
126 |
-
|
127 |
-
text_input = gr.Textbox(label="
|
128 |
-
result_output = gr.Markdown(
|
129 |
-
|
130 |
-
|
131 |
-
text_input.submit(analyze_messages, inputs=text_input, outputs=[result_output,
|
132 |
analyze_btn = gr.Button("Analyze")
|
133 |
-
analyze_btn.click(analyze_messages, inputs=text_input, outputs=[result_output,
|
134 |
-
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch()
|
|
|
9 |
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
10 |
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
# Define labels
|
13 |
LABELS = [
|
14 |
"gaslighting", "mockery", "dismissiveness", "control",
|
15 |
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
|
|
17 |
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat",
|
18 |
"extreme_control"
|
19 |
]
|
|
|
20 |
|
21 |
+
# Custom thresholds per label (feel free to adjust)
|
|
|
|
|
|
|
|
|
22 |
THRESHOLDS = {
|
23 |
"gaslighting": 0.15,
|
24 |
"mockery": 0.15,
|
25 |
+
"dismissiveness": 0.15,
|
26 |
+
"control": 0.10,
|
27 |
"guilt_tripping": 0.15,
|
28 |
"apology_baiting": 0.15,
|
29 |
"blame_shifting": 0.15,
|
30 |
+
"projection": 0.15,
|
31 |
"contradictory_statements": 0.15,
|
32 |
"manipulation": 0.15,
|
33 |
"deflection": 0.15,
|
34 |
+
"insults": 0.15,
|
35 |
+
"obscure_formal": 0.15,
|
36 |
"recovery_phase": 0.15,
|
37 |
+
"suicidal_threat": 0.20,
|
38 |
+
"physical_threat": 0.20,
|
39 |
+
"extreme_control": 0.20,
|
40 |
}
|
41 |
+
|
42 |
+
# Label categories
|
43 |
+
PATTERN_LABELS = LABELS[:14]
|
44 |
+
DANGER_LABELS = LABELS[14:]
|
45 |
+
|
46 |
+
def calculate_abuse_level(scores, thresholds):
|
47 |
+
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
|
48 |
+
if not triggered_scores:
|
49 |
+
return 0.0
|
50 |
+
return round(np.mean(triggered_scores) * 100, 2)
|
51 |
+
|
52 |
+
def interpret_abuse_level(score):
|
53 |
+
if score > 80:
|
54 |
+
return "Extreme / High Risk"
|
55 |
+
elif score > 60:
|
56 |
+
return "Severe / Harmful Pattern Present"
|
57 |
+
elif score > 40:
|
58 |
+
return "Likely Abuse"
|
59 |
+
elif score > 20:
|
60 |
+
return "Mild Concern"
|
61 |
+
else:
|
62 |
+
return "Very Low / Likely Safe"
|
63 |
+
|
64 |
def analyze_messages(input_text):
|
65 |
input_text = input_text.strip()
|
66 |
if not input_text:
|
67 |
+
return "Please enter a message for analysis.", None
|
68 |
|
69 |
+
# Tokenize and predict
|
70 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
71 |
with torch.no_grad():
|
72 |
outputs = model(**inputs)
|
73 |
+
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
74 |
|
75 |
+
# Count triggered labels
|
76 |
+
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
|
77 |
+
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:]))
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# Abuse level calculation
|
80 |
+
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
|
81 |
+
abuse_description = interpret_abuse_level(abuse_level)
|
82 |
|
83 |
+
# Resource logic
|
84 |
+
if danger_flag_count >= 2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
resources = (
|
86 |
+
"**Immediate Help:** Call 911 if in danger.\n\n"
|
87 |
+
"**Crisis Support:** National DV Hotline β [thehotline.org/plan-for-safety](https://www.thehotline.org/plan-for-safety/)\n"
|
88 |
+
"**Legal Support:** WomensLaw β [womenslaw.org](https://www.womenslaw.org/)\n"
|
89 |
+
"**Specialized Services:** RAINN, StrongHearts, LGBTQ+, immigrant, neurodivergent resources"
|
90 |
)
|
91 |
+
elif danger_flag_count == 1:
|
92 |
resources = (
|
93 |
+
"**Emotional Abuse Info:** [thehotline.org/resources](https://www.thehotline.org/resources/what-is-emotional-abuse/)\n"
|
94 |
+
"**Relationship Education:** [joinonelove.org](https://www.joinonelove.org/)\n"
|
95 |
+
"**Support Chat:** [thehotline.org](https://www.thehotline.org/)\n"
|
96 |
+
"**Community Groups:** LGBTQ+, immigrant, and neurodivergent spaces"
|
97 |
)
|
98 |
else:
|
99 |
resources = (
|
100 |
+
"**Healthy Relationships:** [loveisrespect.org](https://www.loveisrespect.org/)\n"
|
101 |
+
"**Find a Therapist:** [psychologytoday.com](https://www.psychologytoday.com/us/therapists)\n"
|
102 |
+
"**Relationship Tools:** [relate.org.uk](https://www.relate.org.uk/)\n"
|
103 |
+
"**Online Peer Support:** (including identity-focused groups)"
|
104 |
)
|
105 |
|
|
|
106 |
result_md = (
|
107 |
+
f"### π Analysis Summary\n\n"
|
108 |
+
f"**Abuse Pattern Count:** {pattern_count}\n"
|
109 |
+
f"**Danger Cues Detected:** {danger_flag_count}\n"
|
110 |
+
f"**Abuse Level:** {abuse_level}% ({abuse_description})\n\n"
|
111 |
+
f"### π Suggested Support Resources\n{resources}"
|
112 |
)
|
113 |
|
114 |
+
# Save to .txt
|
115 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode="w") as f:
|
116 |
f.write(result_md)
|
117 |
report_path = f.name
|
118 |
|
119 |
return result_md, report_path
|
120 |
|
121 |
+
# Interface
|
122 |
with gr.Blocks() as demo:
|
123 |
+
gr.Markdown("# π Abuse Pattern Detector")
|
124 |
+
gr.Markdown("Paste one or more messages for analysis (multi-line supported).")
|
125 |
+
|
126 |
+
text_input = gr.Textbox(label="Text Message(s)", lines=10, placeholder="Paste messages here...")
|
127 |
+
result_output = gr.Markdown()
|
128 |
+
file_output = gr.File(label="π₯ Download Analysis (.txt)")
|
129 |
+
|
130 |
+
text_input.submit(analyze_messages, inputs=text_input, outputs=[result_output, file_output])
|
131 |
analyze_btn = gr.Button("Analyze")
|
132 |
+
analyze_btn.click(analyze_messages, inputs=text_input, outputs=[result_output, file_output])
|
133 |
+
|
134 |
if __name__ == "__main__":
|
135 |
demo.launch()
|