Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -113,6 +113,70 @@ def generate_risk_snippet(abuse_score, top_label, escalation_score):
|
|
113 |
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
|
114 |
|
115 |
return base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
117 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
118 |
none_box = gr.Checkbox(label="None of the above")
|
|
|
113 |
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
|
114 |
|
115 |
return base
|
116 |
+
def analyze_single_message(text, thresholds):
|
117 |
+
motif_hits, matched_phrases = detect_motifs(text)
|
118 |
+
result = sst_pipeline(text)[0]
|
119 |
+
sentiment = "supportive" if result['label'] == "POSITIVE" else "undermining"
|
120 |
+
sentiment_score = result['score'] if sentiment == "undermining" else 0.0
|
121 |
+
|
122 |
+
adjusted_thresholds = {
|
123 |
+
k: v + 0.05 if sentiment == "supportive" else v
|
124 |
+
for k, v in thresholds.items()
|
125 |
+
}
|
126 |
+
|
127 |
+
contradiction_flag = detect_contradiction(text)
|
128 |
+
motifs = [phrase for _, phrase in matched_phrases]
|
129 |
+
|
130 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = model(**inputs)
|
133 |
+
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
134 |
+
|
135 |
+
threshold_labels = [
|
136 |
+
label for label, score in zip(LABELS, scores)
|
137 |
+
if score > adjusted_thresholds[label]
|
138 |
+
]
|
139 |
+
|
140 |
+
top_patterns = sorted(
|
141 |
+
[(label, score) for label, score in zip(LABELS, scores)],
|
142 |
+
key=lambda x: x[1],
|
143 |
+
reverse=True
|
144 |
+
)[:2]
|
145 |
+
|
146 |
+
weighted_scores = [(PATTERN_WEIGHTS.get(label, 1.0) * score) for label, score in top_patterns]
|
147 |
+
abuse_score = min(np.mean(weighted_scores) * 100, 100)
|
148 |
+
|
149 |
+
stage = get_risk_stage(threshold_labels, sentiment)
|
150 |
+
|
151 |
+
return abuse_score, threshold_labels, top_patterns, result, stage
|
152 |
+
|
153 |
+
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
154 |
+
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
155 |
+
none_selected = answers_and_none[-1]
|
156 |
+
escalation_score = 0 if none_selected else sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, responses) if a)
|
157 |
+
messages = [msg1, msg2, msg3]
|
158 |
+
active = [m for m in messages if m.strip()]
|
159 |
+
if not active:
|
160 |
+
return "Please enter at least one message."
|
161 |
+
|
162 |
+
results = [analyze_single_message(m, THRESHOLDS.copy()) for m in active]
|
163 |
+
abuse_scores = [r[0] for r in results]
|
164 |
+
top_labels = [r[2][0][0] for r in results]
|
165 |
+
top_scores = [r[2][0][1] for r in results]
|
166 |
+
sentiments = [r[3]['label'] for r in results]
|
167 |
+
stages = [r[4] for r in results]
|
168 |
+
|
169 |
+
most_common_stage = max(set(stages), key=stages.count)
|
170 |
+
stage_text = RISK_STAGE_LABELS[most_common_stage]
|
171 |
+
|
172 |
+
top_label = f"{top_labels[0]} – {int(round(top_scores[0] * 100))}%"
|
173 |
+
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
|
174 |
+
|
175 |
+
out = f"Abuse Intensity: {composite_abuse}%\n"
|
176 |
+
out += f"Escalation Potential: {('High' if escalation_score >= 16 else 'Moderate' if escalation_score >= 8 else 'Low')} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})"
|
177 |
+
out += generate_risk_snippet(composite_abuse, top_label, escalation_score)
|
178 |
+
out += f"\n\n{stage_text}"
|
179 |
+
return out
|
180 |
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
181 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
182 |
none_box = gr.Checkbox(label="None of the above")
|