Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,13 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
4 |
import numpy as np
|
5 |
-
import tempfile
|
6 |
|
7 |
-
# Load model and tokenizer
|
8 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
9 |
-
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
10 |
-
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
-
# Define labels (
|
13 |
LABELS = [
|
14 |
"gaslighting", "mockery", "dismissiveness", "control",
|
15 |
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
@@ -18,11 +17,11 @@ LABELS = [
|
|
18 |
"extreme_control"
|
19 |
]
|
20 |
|
21 |
-
# Custom thresholds
|
22 |
THRESHOLDS = {
|
23 |
"gaslighting": 0.15,
|
24 |
"mockery": 0.15,
|
25 |
-
"dismissiveness": 0.25, #
|
26 |
"control": 0.13,
|
27 |
"guilt_tripping": 0.15,
|
28 |
"apology_baiting": 0.15,
|
@@ -39,7 +38,7 @@ THRESHOLDS = {
|
|
39 |
"extreme_control": 0.30,
|
40 |
}
|
41 |
|
42 |
-
# Define label groups using slicing (first 14
|
43 |
PATTERN_LABELS = LABELS[:14]
|
44 |
DANGER_LABELS = LABELS[14:]
|
45 |
|
@@ -66,40 +65,47 @@ def analyze_messages(input_text):
|
|
66 |
if not input_text:
|
67 |
return "Please enter a message for analysis.", None
|
68 |
|
69 |
-
# Tokenize and
|
70 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
71 |
with torch.no_grad():
|
72 |
outputs = model(**inputs)
|
73 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
74 |
|
75 |
-
# Count triggered
|
76 |
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
|
77 |
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:]))
|
78 |
|
79 |
-
#
|
80 |
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
|
81 |
abuse_description = interpret_abuse_level(abuse_level)
|
82 |
|
83 |
-
# Resource logic
|
84 |
if danger_flag_count >= 2:
|
85 |
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
|
86 |
else:
|
87 |
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
|
88 |
|
89 |
-
#
|
90 |
result = (
|
91 |
f"Abuse Patterns Detected: {pattern_count} out of {len(PATTERN_LABELS)}\n"
|
92 |
f"Danger Flags Detected: {danger_flag_count} out of {len(DANGER_LABELS)}\n"
|
93 |
f"Abuse Level: {abuse_level}% - {abuse_description}\n"
|
94 |
f"Resources: {resources}"
|
95 |
)
|
96 |
-
|
|
|
|
|
97 |
|
|
|
98 |
iface = gr.Interface(
|
99 |
fn=analyze_messages,
|
100 |
-
inputs=gr.
|
101 |
-
outputs=[
|
|
|
|
|
|
|
102 |
title="Abuse Pattern Detector"
|
103 |
)
|
104 |
|
105 |
-
|
|
|
|
2 |
import torch
|
3 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
+
# Load model and tokenizer with trust_remote_code in case it's needed
|
7 |
model_name = "SamanthaStorm/abuse-pattern-detector-v2"
|
8 |
+
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
|
11 |
+
# Define labels (17 total)
|
12 |
LABELS = [
|
13 |
"gaslighting", "mockery", "dismissiveness", "control",
|
14 |
"guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
|
|
17 |
"extreme_control"
|
18 |
]
|
19 |
|
20 |
+
# Custom thresholds for each label (make sure these match your original settings)
|
21 |
THRESHOLDS = {
|
22 |
"gaslighting": 0.15,
|
23 |
"mockery": 0.15,
|
24 |
+
"dismissiveness": 0.25, # original value, not 0.30
|
25 |
"control": 0.13,
|
26 |
"guilt_tripping": 0.15,
|
27 |
"apology_baiting": 0.15,
|
|
|
38 |
"extreme_control": 0.30,
|
39 |
}
|
40 |
|
41 |
+
# Define label groups using slicing (first 14: abuse patterns, last 3: danger cues)
|
42 |
PATTERN_LABELS = LABELS[:14]
|
43 |
DANGER_LABELS = LABELS[14:]
|
44 |
|
|
|
65 |
if not input_text:
|
66 |
return "Please enter a message for analysis.", None
|
67 |
|
68 |
+
# Tokenize input and generate model predictions
|
69 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
70 |
with torch.no_grad():
|
71 |
outputs = model(**inputs)
|
72 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
73 |
|
74 |
+
# Count the number of triggered abuse pattern and danger flags based on thresholds
|
75 |
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14]))
|
76 |
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:]))
|
77 |
|
78 |
+
# Calculate overall abuse level and interpret it
|
79 |
abuse_level = calculate_abuse_level(scores, THRESHOLDS)
|
80 |
abuse_description = interpret_abuse_level(abuse_level)
|
81 |
|
82 |
+
# Resource logic based on the number of danger cues
|
83 |
if danger_flag_count >= 2:
|
84 |
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
|
85 |
else:
|
86 |
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
|
87 |
|
88 |
+
# Prepare the result summary and detailed scores
|
89 |
result = (
|
90 |
f"Abuse Patterns Detected: {pattern_count} out of {len(PATTERN_LABELS)}\n"
|
91 |
f"Danger Flags Detected: {danger_flag_count} out of {len(DANGER_LABELS)}\n"
|
92 |
f"Abuse Level: {abuse_level}% - {abuse_description}\n"
|
93 |
f"Resources: {resources}"
|
94 |
)
|
95 |
+
|
96 |
+
# Return both a text summary and a JSON-like dict of scores per label
|
97 |
+
return result, {"scores": dict(zip(LABELS, scores))}
|
98 |
|
99 |
+
# Updated Gradio Interface using new component syntax
|
100 |
iface = gr.Interface(
|
101 |
fn=analyze_messages,
|
102 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter message here..."),
|
103 |
+
outputs=[
|
104 |
+
gr.Textbox(label="Analysis Result"),
|
105 |
+
gr.JSON(label="Scores")
|
106 |
+
],
|
107 |
title="Abuse Pattern Detector"
|
108 |
)
|
109 |
|
110 |
+
if __name__ == "__main__":
|
111 |
+
iface.launch()
|