Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
|
|
7 |
|
8 |
# custom fine-tuned sentiment model
|
9 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
@@ -51,8 +52,8 @@ EXPLANATIONS = {
|
|
51 |
}
|
52 |
|
53 |
PATTERN_WEIGHTS = {
|
54 |
-
"gaslighting": 1.3, "
|
55 |
-
"
|
56 |
}
|
57 |
|
58 |
# --- DARVO Detection Tools ---
|
@@ -64,39 +65,29 @@ DARVO_MOTIFS = [
|
|
64 |
"so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen",
|
65 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
66 |
]
|
67 |
-
import re
|
68 |
|
69 |
def detect_contradiction(message):
|
70 |
contradiction_flag = False
|
71 |
contradiction_phrases = [
|
72 |
-
# Emotional flip-flops
|
73 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
74 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
75 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
76 |
-
# Control + helplessness
|
77 |
(r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE),
|
78 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
79 |
-
# Passive aggression or self-victimization switch
|
80 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE),
|
81 |
]
|
82 |
-
|
83 |
for pattern, flags in contradiction_phrases:
|
84 |
if re.search(pattern, message, flags):
|
85 |
contradiction_flag = True
|
86 |
break
|
87 |
-
|
88 |
return contradiction_flag
|
89 |
-
|
90 |
-
|
91 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
92 |
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
|
93 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
94 |
-
|
95 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
96 |
-
|
97 |
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
98 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
99 |
-
|
100 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
101 |
darvo_score = (
|
102 |
0.3 * pattern_score +
|
@@ -104,7 +95,6 @@ def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_fo
|
|
104 |
0.2 * motif_score +
|
105 |
0.2 * contradiction_score
|
106 |
)
|
107 |
-
|
108 |
return round(min(darvo_score, 1.0), 3)
|
109 |
|
110 |
def custom_sentiment(text):
|
@@ -122,40 +112,23 @@ def calculate_abuse_level(scores, thresholds, motif_hits=None, flag_multiplier=1
|
|
122 |
base_score *= flag_multiplier
|
123 |
return min(base_score, 100.0)
|
124 |
|
125 |
-
def interpret_abuse_level(score):
|
126 |
-
if score > 80:
|
127 |
-
return "Extreme / High Risk"
|
128 |
-
elif score > 60:
|
129 |
-
return "Severe / Harmful Pattern Present"
|
130 |
-
elif score > 40:
|
131 |
-
return "Likely Abuse"
|
132 |
-
elif score > 20:
|
133 |
-
return "Mild Concern"
|
134 |
-
return "Very Low / Likely Safe"
|
135 |
-
|
136 |
def analyze_single_message(text, thresholds, motif_flags):
|
137 |
motif_hits, matched_phrases = detect_motifs(text)
|
138 |
sentiment = custom_sentiment(text)
|
139 |
sentiment_score = sentiment["score"] if sentiment["label"] == "undermining" else 0.0
|
140 |
-
|
141 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
142 |
-
|
143 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
144 |
with torch.no_grad():
|
145 |
outputs = model(**inputs)
|
146 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
147 |
-
|
148 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
149 |
phrase_labels = [label for label, _ in matched_phrases]
|
150 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
151 |
-
|
152 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
153 |
-
|
154 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
155 |
-
|
156 |
motif_phrases = [text for _, text in matched_phrases]
|
157 |
-
|
158 |
-
|
159 |
return abuse_level, pattern_labels_used, top_patterns, darvo_score
|
160 |
|
161 |
def analyze_composite(msg1, msg2, msg3, flags):
|
@@ -164,49 +137,36 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
164 |
active_messages = [m for m in messages if m.strip()]
|
165 |
if not active_messages:
|
166 |
return "Please enter at least one message."
|
167 |
-
|
168 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
169 |
abuse_scores = [r[0] for r in results]
|
170 |
darvo_scores = [r[3] for r in results]
|
171 |
average_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
172 |
-
print(f"Average DARVO Score: {average_darvo}")
|
173 |
-
|
174 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
175 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
176 |
label_counts = {label: sum(label in s for s in label_sets) for label in set().union(*label_sets)}
|
177 |
top_label = max(label_counts.items(), key=lambda x: x[1])
|
178 |
top_explanation = EXPLANATIONS.get(top_label[0], "")
|
179 |
-
|
180 |
-
# Adjust flag-based weight relative to number of messages
|
181 |
danger_weight = 5
|
182 |
flag_weights = {
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
}
|
189 |
flag_boost = sum(flag_weights.get(f, 3) for f in flags) / len(active_messages)
|
190 |
composite_score = min(base_score + flag_boost, 100)
|
191 |
-
# Apply message count dampening AFTER base and flag boost
|
192 |
if len(active_messages) == 1:
|
193 |
-
composite_score *= 0.85
|
194 |
elif len(active_messages) == 2:
|
195 |
-
composite_score *= 0.93
|
196 |
-
|
197 |
-
composite_score = round(min(composite_score, 100), 2) # re-cap just in case
|
198 |
-
|
199 |
-
# Include pattern explanations
|
200 |
result = f"These messages show a pattern of **{top_label[0]}** and are estimated to be {composite_score}% likely abusive."
|
201 |
-
|
202 |
if top_explanation:
|
203 |
result += f"\n• {top_explanation}"
|
204 |
-
|
205 |
-
# Show DARVO score
|
206 |
if average_darvo > 0.25:
|
207 |
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
208 |
result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
209 |
-
|
210 |
return result
|
211 |
|
212 |
textbox_inputs = [
|
|
|
4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
7 |
+
import re
|
8 |
|
9 |
# custom fine-tuned sentiment model
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
|
|
52 |
}
|
53 |
|
54 |
PATTERN_WEIGHTS = {
|
55 |
+
"gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8, "blame shifting": 0.8,
|
56 |
+
"contradictory statements": 0.75
|
57 |
}
|
58 |
|
59 |
# --- DARVO Detection Tools ---
|
|
|
65 |
"so now it’s all my fault", "i’m the villain", "i’m always wrong", "you never listen",
|
66 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
67 |
]
|
|
|
68 |
|
69 |
def detect_contradiction(message):
|
70 |
contradiction_flag = False
|
71 |
contradiction_phrases = [
|
|
|
72 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
73 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
74 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
|
|
75 |
(r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE),
|
76 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
|
|
77 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE),
|
78 |
]
|
|
|
79 |
for pattern, flags in contradiction_phrases:
|
80 |
if re.search(pattern, message, flags):
|
81 |
contradiction_flag = True
|
82 |
break
|
|
|
83 |
return contradiction_flag
|
84 |
+
|
|
|
85 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
86 |
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
|
87 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
|
|
88 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
|
|
89 |
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
90 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
|
|
91 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
92 |
darvo_score = (
|
93 |
0.3 * pattern_score +
|
|
|
95 |
0.2 * motif_score +
|
96 |
0.2 * contradiction_score
|
97 |
)
|
|
|
98 |
return round(min(darvo_score, 1.0), 3)
|
99 |
|
100 |
def custom_sentiment(text):
|
|
|
112 |
base_score *= flag_multiplier
|
113 |
return min(base_score, 100.0)
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
def analyze_single_message(text, thresholds, motif_flags):
|
116 |
motif_hits, matched_phrases = detect_motifs(text)
|
117 |
sentiment = custom_sentiment(text)
|
118 |
sentiment_score = sentiment["score"] if sentiment["label"] == "undermining" else 0.0
|
|
|
119 |
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
|
|
|
120 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
121 |
with torch.no_grad():
|
122 |
outputs = model(**inputs)
|
123 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
|
|
124 |
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
125 |
phrase_labels = [label for label, _ in matched_phrases]
|
126 |
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
|
|
127 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
|
|
128 |
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
|
|
129 |
motif_phrases = [text for _, text in matched_phrases]
|
130 |
+
contradiction_flag = detect_contradiction(text)
|
131 |
+
darvo_score = calculate_darvo_score(pattern_labels_used, 0.0, sentiment_score, motif_phrases, contradiction_flag)
|
132 |
return abuse_level, pattern_labels_used, top_patterns, darvo_score
|
133 |
|
134 |
def analyze_composite(msg1, msg2, msg3, flags):
|
|
|
137 |
active_messages = [m for m in messages if m.strip()]
|
138 |
if not active_messages:
|
139 |
return "Please enter at least one message."
|
|
|
140 |
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
141 |
abuse_scores = [r[0] for r in results]
|
142 |
darvo_scores = [r[3] for r in results]
|
143 |
average_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
|
|
|
|
144 |
base_score = sum(abuse_scores) / len(abuse_scores)
|
145 |
label_sets = [[label for label, _ in r[2]] for r in results]
|
146 |
label_counts = {label: sum(label in s for s in label_sets) for label in set().union(*label_sets)}
|
147 |
top_label = max(label_counts.items(), key=lambda x: x[1])
|
148 |
top_explanation = EXPLANATIONS.get(top_label[0], "")
|
|
|
|
|
149 |
danger_weight = 5
|
150 |
flag_weights = {
|
151 |
+
"They've threatened harm": 6,
|
152 |
+
"They isolate me": 5,
|
153 |
+
"I’ve changed my behavior out of fear": 4,
|
154 |
+
"They monitor/follow me": 4,
|
155 |
+
"I feel unsafe when alone with them": 6
|
156 |
+
}
|
157 |
flag_boost = sum(flag_weights.get(f, 3) for f in flags) / len(active_messages)
|
158 |
composite_score = min(base_score + flag_boost, 100)
|
|
|
159 |
if len(active_messages) == 1:
|
160 |
+
composite_score *= 0.85
|
161 |
elif len(active_messages) == 2:
|
162 |
+
composite_score *= 0.93
|
163 |
+
composite_score = round(min(composite_score, 100), 2)
|
|
|
|
|
|
|
164 |
result = f"These messages show a pattern of **{top_label[0]}** and are estimated to be {composite_score}% likely abusive."
|
|
|
165 |
if top_explanation:
|
166 |
result += f"\n• {top_explanation}"
|
|
|
|
|
167 |
if average_darvo > 0.25:
|
168 |
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
169 |
result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
|
|
170 |
return result
|
171 |
|
172 |
textbox_inputs = [
|