SamanthaStorm commited on
Commit
6476c8b
·
verified ·
1 Parent(s): 5bb1f05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -67
app.py CHANGED
@@ -1,62 +1,70 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import RobertaForSequenceClassification, RobertaTokenizer
4
  import numpy as np
5
- from transformers import pipeline
6
 
7
- # Load sentiment analysis model
8
  sentiment_analyzer = pipeline("sentiment-analysis")
9
 
10
- # Load model and tokenizer
11
  model_name = "SamanthaStorm/abuse-pattern-detector-v2"
12
  model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
13
  tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
14
 
 
15
  LABELS = [
16
  "gaslighting", "mockery", "dismissiveness", "control",
17
  "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
18
  "contradictory_statements", "manipulation", "deflection", "insults",
19
- "obscure_formal", "recovery_phase", "non_abusive",
20
  "suicidal_threat", "physical_threat", "extreme_control"
21
  ]
 
 
22
 
 
23
  THRESHOLDS = {
24
- "gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.30,
25
- "control": 0.43, "guilt_tripping": 0.19, "apology_baiting": 0.45,
26
- "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
27
- "manipulation": 0.25, "deflection": 0.30, "insults": 0.34,
28
- "obscure_formal": 0.25, "recovery_phase": 0.25, "non_abusive": 0.70,
29
- "suicidal_threat": 0.45, "physical_threat": 0.20, "extreme_control": 0.36
 
 
 
 
 
 
 
 
 
 
 
 
30
  }
31
 
32
- PATTERN_LABELS = LABELS[:15]
33
- DANGER_LABELS = LABELS[15:]
34
-
35
  EXPLANATIONS = {
36
- "gaslighting": "Gaslighting involves making someone question their own reality or perceptions.",
37
- "blame_shifting": "Blame-shifting is when one person redirects responsibility onto someone else.",
38
- "projection": "Projection accuses the victim of behaviors the abuser exhibits themselves.",
39
- "dismissiveness": "Dismissiveness belittles or ignores another persons thoughts or feelings.",
40
- "mockery": "Mockery involves ridicule or sarcasm meant to humiliate.",
41
- "recovery_phase": "Recovery phase invalidates someone’s healing process or needs.",
42
- "insults": "Insults are derogatory remarks meant to degrade or attack.",
43
- "apology_baiting": "Apology-baiting manipulates someone into apologizing for the abuser’s actions.",
44
- "deflection": "Deflection shifts responsibility or changes the subject to avoid blame.",
45
- "control": "Control includes behavior that limits another’s autonomy or freedom.",
46
- "extreme_control": "Extreme control is highly manipulative dominance over another’s choices.",
47
- "physical_threat": "Physical threats suggest or state a risk of bodily harm.",
48
- "suicidal_threat": "Suicidal threats use self-harm as a way to manipulate others.",
49
- "guilt_tripping": "Guilt-tripping makes someone feel guilty for things they didn’t cause.",
50
- "manipulation": "Manipulation influences someone’s behavior through deceptive emotional tactics.",
51
- "non_abusive": "Non-abusive language is respectful, supportive, and healthy."
52
  }
53
 
54
- def calculate_abuse_level(scores, thresholds):
55
- triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]]
56
- if not triggered_scores:
57
- return 0.0
58
- return round(np.mean(triggered_scores) * 100, 2)
59
-
60
  def interpret_abuse_level(score):
61
  if score > 80:
62
  return "Extreme / High Risk"
@@ -69,6 +77,7 @@ def interpret_abuse_level(score):
69
  else:
70
  return "Very Low / Likely Safe"
71
 
 
72
  def analyze_messages(input_text, context_flags):
73
  input_text = input_text.strip()
74
  if not input_text:
@@ -79,78 +88,75 @@ def analyze_messages(input_text, context_flags):
79
  sentiment_label = sentiment['label']
80
  sentiment_score = sentiment['score']
81
 
82
- # Threshold adjustment for negative tone
83
  adjusted_thresholds = THRESHOLDS.copy()
84
- if sentiment_label == "NEGATIVE":
85
- adjusted_thresholds = {key: val * 0.8 for key, val in THRESHOLDS.items()}
86
 
87
- # Tokenization and prediction
88
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
89
  with torch.no_grad():
90
  outputs = model(**inputs)
91
  scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
92
 
93
- # Pattern and danger flags from model
94
  pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15]))
95
  danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:]))
96
 
97
- # Add contextual danger from checkboxes
98
  if context_flags and len(context_flags) >= 2:
99
  danger_flag_count += 1
100
 
101
- # Non-abusive override
102
  non_abusive_score = scores[LABELS.index('non_abusive')]
103
  if non_abusive_score > adjusted_thresholds['non_abusive']:
104
  return "This message is classified as non-abusive."
105
 
106
- # Abuse level
107
- abuse_level = calculate_abuse_level(scores, THRESHOLDS)
 
108
  abuse_description = interpret_abuse_level(abuse_level)
109
 
 
 
 
 
 
 
 
110
  # Resources
111
  if danger_flag_count >= 2:
112
- resources = "⚠️ Your responses indicate elevated danger. Please consider seeking support immediately through a domestic violence hotline or trusted professional."
113
  else:
114
  resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
115
 
116
- # Top patterns with definitions
117
- scored_patterns = [(label, score) for label, score in zip(PATTERN_LABELS, scores[:15])]
118
- top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]
119
- top_pattern_explanations = "\n".join([
120
- f"• {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}"
121
- for label, _ in top_patterns
122
- ])
123
-
124
  result = (
125
  f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n"
126
  f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
127
  f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
128
  "The Danger Assessment is a validated tool that helps identify serious risk in intimate partner violence. "
129
- "It flags communication patterns associated with increased risk of severe harm.\n\n"
130
- f"Resources: {resources}\n\n"
 
131
  f"Sentiment: {sentiment_label} (Confidence: {sentiment_score*100:.2f}%)"
132
  )
133
-
134
  return result
135
 
136
- # Launch interface
137
  iface = gr.Interface(
138
  fn=analyze_messages,
139
  inputs=[
140
- gr.Textbox(lines=10, placeholder="Enter message here..."),
141
  gr.CheckboxGroup(
 
 
142
  label="Do any of these apply to your situation?",
143
- choices=[
144
- "They’ve threatened harm",
145
- "They isolate me",
146
- "I’ve changed my behavior out of fear",
147
- "They monitor/follow me",
148
- "I feel unsafe when alone with them"
149
- ]
150
  )
151
  ],
152
  outputs=gr.Textbox(label="Analysis Result"),
153
- title="Abuse Pattern Detector",
154
  )
155
 
156
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  import torch
3
+ from transformers import RobertaForSequenceClassification, RobertaTokenizer, pipeline
4
  import numpy as np
 
5
 
6
+ # Load sentiment model
7
  sentiment_analyzer = pipeline("sentiment-analysis")
8
 
9
+ # Load abuse pattern model
10
  model_name = "SamanthaStorm/abuse-pattern-detector-v2"
11
  model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
12
  tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
 
14
+ # Labels
15
  LABELS = [
16
  "gaslighting", "mockery", "dismissiveness", "control",
17
  "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
18
  "contradictory_statements", "manipulation", "deflection", "insults",
19
+ "obscure_formal", "recovery_phase", "non_abusive",
20
  "suicidal_threat", "physical_threat", "extreme_control"
21
  ]
22
+ PATTERN_LABELS = LABELS[:15]
23
+ DANGER_LABELS = LABELS[15:]
24
 
25
+ # Thresholds
26
  THRESHOLDS = {
27
+ "gaslighting": 0.25,
28
+ "mockery": 0.15,
29
+ "dismissiveness": 0.30,
30
+ "control": 0.43,
31
+ "guilt_tripping": 0.19,
32
+ "apology_baiting": 0.45,
33
+ "blame_shifting": 0.23,
34
+ "projection": 0.50,
35
+ "contradictory_statements": 0.25,
36
+ "manipulation": 0.25,
37
+ "deflection": 0.30,
38
+ "insults": 0.34,
39
+ "obscure_formal": 0.25,
40
+ "recovery_phase": 0.25,
41
+ "non_abusive": 0.70,
42
+ "suicidal_threat": 0.45,
43
+ "physical_threat": 0.20,
44
+ "extreme_control": 0.36
45
  }
46
 
47
+ # Explanations
 
 
48
  EXPLANATIONS = {
49
+ "gaslighting": "Gaslighting involves making someone question their own reality or perceptions, often causing them to feel confused or insecure.",
50
+ "blame_shifting": "Blame-shifting is when one person redirects the responsibility for an issue onto someone else, avoiding accountability.",
51
+ "projection": "Projection involves accusing the victim of behaviors or characteristics that the abuser themselves exhibit.",
52
+ "dismissiveness": "Dismissiveness is the act of belittling or disregarding another person's thoughts, feelings, or experiences.",
53
+ "mockery": "Mockery involves ridiculing or making fun of someone in a hurtful way, often with the intent to humiliate them.",
54
+ "recovery_phase": "Recovery phase refers to dismissing or invalidating someone’s process of emotional healing, or ignoring their need for support.",
55
+ "insults": "Insults are derogatory remarks aimed at degrading or humiliating someone, often targeting their personal traits or character.",
56
+ "apology_baiting": "Apology-baiting is when the abuser manipulates the victim into apologizing for something the abuser caused or did wrong.",
57
+ "deflection": "Deflection is the act of avoiding responsibility or shifting focus away from one's own actions, often to avoid accountability.",
58
+ "control": "Control tactics are behaviors that restrict or limit someone's autonomy, often involving domination, manipulation, or coercion.",
59
+ "extreme_control": "Extreme control involves excessive manipulation or domination over someone’s actions, decisions, or behaviors.",
60
+ "physical_threat": "Physical threats involve any indication or direct mention of harm to someone’s physical well-being, often used to intimidate or control.",
61
+ "suicidal_threat": "Suicidal threats are statements made to manipulate or control someone by making them feel responsible for the abuser’s well-being.",
62
+ "guilt_tripping": "Guilt-tripping involves making someone feel guilty or responsible for things they didn’t do, often to manipulate their behavior.",
63
+ "manipulation": "Manipulation refers to using deceptive tactics to control or influence someone’s emotions, decisions, or behavior to serve the manipulator’s own interests.",
64
+ "non_abusive": "Non-abusive language is communication that is respectful, empathetic, and free of harmful behaviors or manipulation."
65
  }
66
 
67
+ # Abuse level interpretation
 
 
 
 
 
68
  def interpret_abuse_level(score):
69
  if score > 80:
70
  return "Extreme / High Risk"
 
77
  else:
78
  return "Very Low / Likely Safe"
79
 
80
+ # Main analysis
81
  def analyze_messages(input_text, context_flags):
82
  input_text = input_text.strip()
83
  if not input_text:
 
88
  sentiment_label = sentiment['label']
89
  sentiment_score = sentiment['score']
90
 
91
+ # Adjust thresholds if negative tone
92
  adjusted_thresholds = THRESHOLDS.copy()
93
+ if sentiment_label.upper() == "NEGATIVE":
94
+ adjusted_thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()}
95
 
96
+ # Run model
97
  inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
98
  with torch.no_grad():
99
  outputs = model(**inputs)
100
  scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
101
 
102
+ # Pattern & danger from model
103
  pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15]))
104
  danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:]))
105
 
106
+ # Add checkbox context flags
107
  if context_flags and len(context_flags) >= 2:
108
  danger_flag_count += 1
109
 
110
+ # Override if non-abusive
111
  non_abusive_score = scores[LABELS.index('non_abusive')]
112
  if non_abusive_score > adjusted_thresholds['non_abusive']:
113
  return "This message is classified as non-abusive."
114
 
115
+ # Abuse score
116
+ triggered_scores = [score for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
117
+ abuse_level = round(np.mean(triggered_scores) * 100, 2) if triggered_scores else 0.0
118
  abuse_description = interpret_abuse_level(abuse_level)
119
 
120
+ # Top patterns
121
+ scored_patterns = [(label, score) for label, score in zip(PATTERN_LABELS, scores[:15])]
122
+ top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2]
123
+ top_pattern_explanations = "\n".join(
124
+ [f"• {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}" for label, _ in top_patterns]
125
+ )
126
+
127
  # Resources
128
  if danger_flag_count >= 2:
129
+ resources = "Immediate assistance recommended. Please seek professional help or contact emergency services."
130
  else:
131
  resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors."
132
 
133
+ # Result
 
 
 
 
 
 
 
134
  result = (
135
  f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n"
136
  f"Most Likely Patterns:\n{top_pattern_explanations}\n\n"
137
  f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n"
138
  "The Danger Assessment is a validated tool that helps identify serious risk in intimate partner violence. "
139
+ "It flags communication patterns associated with increased risk of severe harm. "
140
+ "For more info, consider reaching out to support groups or professionals.\n\n"
141
+ f"Resources: {resources} \n\n"
142
  f"Sentiment: {sentiment_label} (Confidence: {sentiment_score*100:.2f}%)"
143
  )
 
144
  return result
145
 
146
+ # Interface
147
  iface = gr.Interface(
148
  fn=analyze_messages,
149
  inputs=[
150
+ gr.Textbox(lines=10, placeholder="Enter message here...", label="input_text"),
151
  gr.CheckboxGroup(
152
+ ["They've threatened harm", "They isolate me", "I've changed my behavior out of fear",
153
+ "They monitor/follow me", "I feel unsafe when alone with them"],
154
  label="Do any of these apply to your situation?",
155
+ type="value"
 
 
 
 
 
 
156
  )
157
  ],
158
  outputs=gr.Textbox(label="Analysis Result"),
159
+ title="Abuse Pattern Detector"
160
  )
161
 
162
  if __name__ == "__main__":