SamanthaStorm commited on
Commit
867b307
·
verified ·
1 Parent(s): 87d95ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -3,6 +3,7 @@ import torch
3
  import numpy as np
4
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
  from transformers import RobertaForSequenceClassification, RobertaTokenizer
 
6
 
7
  # custom fine-tuned sentiment model
8
  sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
@@ -78,9 +79,12 @@ def interpret_abuse_level(score):
78
 
79
  def analyze_messages(input_text, risk_flags):
80
  input_text = input_text.strip()
81
- if not input_text:
82
  return "Please enter a message for analysis."
83
 
 
 
 
84
  sentiment = custom_sentiment(input_text)
85
  sentiment_label = sentiment['label']
86
  sentiment_score = sentiment['score']
@@ -136,7 +140,10 @@ def analyze_messages(input_text, risk_flags):
136
  result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag}" for flag in contextual_flags])
137
  if high_risk_context:
138
  result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources."
139
-
 
 
 
140
  return result
141
 
142
  iface = gr.Interface(
 
3
  import numpy as np
4
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
  from transformers import RobertaForSequenceClassification, RobertaTokenizer
6
+ from motif_tagging import tag_motifs
7
 
8
  # custom fine-tuned sentiment model
9
  sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
 
79
 
80
  def analyze_messages(input_text, risk_flags):
81
  input_text = input_text.strip()
82
+ if not input_text:
83
  return "Please enter a message for analysis."
84
 
85
+ motif_tags, matched_phrases = tag_motifs(input_text)
86
+ contextual_flags = risk_flags + motif_tags # Combine checkbox and motif flags
87
+
88
  sentiment = custom_sentiment(input_text)
89
  sentiment_label = sentiment['label']
90
  sentiment_score = sentiment['score']
 
140
  result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag}" for flag in contextual_flags])
141
  if high_risk_context:
142
  result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources."
143
+ if matched_phrases:
144
+ result += "\n\n🧠 Detected High-Risk Language:\n"
145
+ for label, pattern in matched_phrases:
146
+ result += f"• {label.replace('_', ' ').title()} phrase matched\n"
147
  return result
148
 
149
  iface = gr.Interface(