Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -257,33 +257,19 @@ def analyze_single_message(text, thresholds):
|
|
257 |
reverse=True
|
258 |
)[:2]
|
259 |
|
260 |
-
# Compute weighted average across all patterns (not just top 2)
|
261 |
-
# ✅ Only include passed labels in abuse intensity calculation
|
262 |
-
matched_scores = [
|
263 |
-
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
|
264 |
-
for label, score in zip(LABELS, scores)
|
265 |
-
if score > adjusted_thresholds[label]
|
266 |
-
]
|
267 |
-
|
268 |
-
if matched_scores:
|
269 |
-
weighted_total = sum(score * weight for _, score, weight in matched_scores)
|
270 |
-
weight_sum = sum(weight for _, _, weight in matched_scores)
|
271 |
-
abuse_score_raw = (weighted_total / weight_sum) * 100
|
272 |
-
else:
|
273 |
-
abuse_score_raw = 0
|
274 |
-
|
275 |
matched_scores = [
|
276 |
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
|
277 |
for label, score in zip(LABELS, scores)
|
278 |
if score > adjusted_thresholds[label]
|
279 |
]
|
280 |
-
|
281 |
if matched_scores:
|
282 |
weighted_total = sum(score * weight for _, score, weight in matched_scores)
|
283 |
weight_sum = sum(weight for _, _, weight in matched_scores)
|
284 |
abuse_score_raw = (weighted_total / weight_sum) * 100
|
285 |
else:
|
286 |
abuse_score_raw = 0
|
|
|
|
|
287 |
if threshold_labels:
|
288 |
stage = get_risk_stage(threshold_labels, sentiment)
|
289 |
else:
|
|
|
257 |
reverse=True
|
258 |
)[:2]
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
matched_scores = [
|
261 |
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
|
262 |
for label, score in zip(LABELS, scores)
|
263 |
if score > adjusted_thresholds[label]
|
264 |
]
|
|
|
265 |
if matched_scores:
|
266 |
weighted_total = sum(score * weight for _, score, weight in matched_scores)
|
267 |
weight_sum = sum(weight for _, _, weight in matched_scores)
|
268 |
abuse_score_raw = (weighted_total / weight_sum) * 100
|
269 |
else:
|
270 |
abuse_score_raw = 0
|
271 |
+
print(f"Matched patterns used for abuse scoring: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
|
272 |
+
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
|
273 |
if threshold_labels:
|
274 |
stage = get_risk_stage(threshold_labels, sentiment)
|
275 |
else:
|