Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,790 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer
|
6 |
-
from motif_tagging import detect_motifs
|
7 |
-
import re
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import io
|
10 |
-
from PIL import Image
|
11 |
-
from datetime import datetime
|
12 |
-
from transformers import pipeline as hf_pipeline # prevent name collision with gradio pipeline
|
13 |
-
from functools import lru_cache # Import lru_cache
|
14 |
-
|
15 |
-
def get_emotion_profile(text):
|
16 |
-
emotions = emotion_pipeline(text)
|
17 |
-
if isinstance(emotions, list) and isinstance(emotions[0], list):
|
18 |
-
emotions = emotions[0]
|
19 |
-
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
|
20 |
-
# Emotion model (no retraining needed)
|
21 |
-
emotion_pipeline = hf_pipeline(
|
22 |
-
"text-classification",
|
23 |
-
model="j-hartmann/emotion-english-distilroberta-base",
|
24 |
-
top_k=6,
|
25 |
-
truncation=True
|
26 |
-
)
|
27 |
-
|
28 |
-
# --- Timeline Visualization Function ---
|
29 |
-
def generate_abuse_score_chart(dates, scores, labels):
|
30 |
-
import matplotlib.pyplot as plt
|
31 |
-
import io
|
32 |
-
from PIL import Image
|
33 |
-
from datetime import datetime
|
34 |
-
import re
|
35 |
-
|
36 |
-
# Determine if all entries are valid dates
|
37 |
-
if all(re.match(r"\d{4}-\d{2}-\d{2}", d) for d in dates):
|
38 |
-
parsed_x = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
|
39 |
-
x_labels = [d.strftime("%Y-%m-%d") for d in parsed_x]
|
40 |
-
else:
|
41 |
-
parsed_x = list(range(1, len(dates) + 1))
|
42 |
-
x_labels = [f"Message {i+1}" for i in range(len(dates))]
|
43 |
-
|
44 |
-
fig, ax = plt.subplots(figsize=(8, 3))
|
45 |
-
ax.plot(parsed_x, scores, marker='o', linestyle='-', color='darkred', linewidth=2)
|
46 |
-
|
47 |
-
for x, y in zip(parsed_x, scores):
|
48 |
-
ax.text(x, y + 2, f"{int(y)}%", ha='center', fontsize=8, color='black')
|
49 |
-
|
50 |
-
ax.set_xticks(parsed_x)
|
51 |
-
ax.set_xticklabels(x_labels)
|
52 |
-
ax.set_xlabel("") # No axis label
|
53 |
-
ax.set_ylabel("Abuse Score (%)")
|
54 |
-
ax.set_ylim(0, 105)
|
55 |
-
ax.grid(True)
|
56 |
-
plt.tight_layout()
|
57 |
-
|
58 |
-
buf = io.BytesIO()
|
59 |
-
plt.savefig(buf, format='png')
|
60 |
-
buf.seek(0)
|
61 |
-
return Image.open(buf)
|
62 |
-
|
63 |
-
|
64 |
-
# --- Abuse Model ---
|
65 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
66 |
-
|
67 |
-
model_name = "SamanthaStorm/tether-multilabel-v4"
|
68 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
70 |
-
|
71 |
-
LABELS = [
|
72 |
-
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness", "blame shifting",
|
73 |
-
"nonabusive","projection", "insults", "contradictory statements", "obscure language"
|
74 |
-
]
|
75 |
-
|
76 |
-
THRESHOLDS = {
|
77 |
-
"recovery": 0.27,
|
78 |
-
"control": 0.47,
|
79 |
-
"gaslighting": 0.48,
|
80 |
-
"guilt tripping": .56,
|
81 |
-
"dismissiveness": 0.25,
|
82 |
-
"blame shifting": 0.55,
|
83 |
-
"projection": 0.59,
|
84 |
-
"insults": 0.33,
|
85 |
-
"contradictory statements": 0.27,
|
86 |
-
"obscure language": 0.65,
|
87 |
-
"nonabusive": 1.0
|
88 |
-
}
|
89 |
-
|
90 |
-
PATTERN_WEIGHTS = {
|
91 |
-
"recovery": 0.7,
|
92 |
-
"control": 1.4,
|
93 |
-
"gaslighting": 1.50,
|
94 |
-
"guilt tripping": 0.9,
|
95 |
-
"dismissiveness": 0.9,
|
96 |
-
"blame shifting": 0.8,
|
97 |
-
"projection": 0.5,
|
98 |
-
"insults": 1.2,
|
99 |
-
"contradictory statements": 1.0,
|
100 |
-
"obscure language": 0.9,
|
101 |
-
"nonabusive": 0.0
|
102 |
-
}
|
103 |
-
|
104 |
-
ESCALATION_RISKS = {
|
105 |
-
"blame shifting": "low",
|
106 |
-
"contradictory statements": "moderate",
|
107 |
-
"control": "high",
|
108 |
-
"dismissiveness": "moderate",
|
109 |
-
"gaslighting": "moderate",
|
110 |
-
"guilt tripping": "moderate",
|
111 |
-
"insults": "moderate",
|
112 |
-
"obscure language": "low",
|
113 |
-
"projection": "low",
|
114 |
-
"recovery phase": "low"
|
115 |
-
}
|
116 |
-
RISK_STAGE_LABELS = {
|
117 |
-
1: "🌀 Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
|
118 |
-
2: "🔥 Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
|
119 |
-
3: "🌧️ Risk Stage: Reconciliation\nThis message reflects a reset attempt—apologies or emotional repair without accountability.",
|
120 |
-
4: "🌸 Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
|
121 |
-
}
|
122 |
-
|
123 |
-
ESCALATION_QUESTIONS = [
|
124 |
-
("Partner has access to firearms or weapons", 4),
|
125 |
-
("Partner threatened to kill you", 3),
|
126 |
-
("Partner threatened you with a weapon", 3),
|
127 |
-
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
128 |
-
("Partner injured or threatened your pet(s)", 3),
|
129 |
-
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
130 |
-
("Partner forced or coerced you into unwanted sexual acts", 3),
|
131 |
-
("Partner threatened to take away your children", 2),
|
132 |
-
("Violence has increased in frequency or severity", 3),
|
133 |
-
("Partner monitors your calls/GPS/social media", 2)
|
134 |
-
]
|
135 |
-
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score):
|
136 |
-
sadness = emotions.get("sadness", 0)
|
137 |
-
joy = emotions.get("joy", 0)
|
138 |
-
neutral = emotions.get("neutral", 0)
|
139 |
-
disgust = emotions.get("disgust", 0)
|
140 |
-
anger = emotions.get("anger", 0)
|
141 |
-
fear = emotions.get("fear", 0)
|
142 |
-
disgust = emotions.get("disgust", 0)
|
143 |
-
|
144 |
-
# 1. Performative Regret
|
145 |
-
if (
|
146 |
-
sadness > 0.4 and
|
147 |
-
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and
|
148 |
-
(sentiment == "undermining" or abuse_score > 40)
|
149 |
-
):
|
150 |
-
return "performative regret"
|
151 |
-
|
152 |
-
# 2. Coercive Warmth
|
153 |
-
if (
|
154 |
-
(joy > 0.3 or sadness > 0.4) and
|
155 |
-
any(p in patterns for p in ["control", "gaslighting"]) and
|
156 |
-
sentiment == "undermining"
|
157 |
-
):
|
158 |
-
return "coercive warmth"
|
159 |
-
|
160 |
-
# 3. Cold Invalidation
|
161 |
-
if (
|
162 |
-
(neutral + disgust) > 0.5 and
|
163 |
-
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
|
164 |
-
sentiment == "undermining"
|
165 |
-
):
|
166 |
-
return "cold invalidation"
|
167 |
-
|
168 |
-
# 4. Genuine Vulnerability
|
169 |
-
if (
|
170 |
-
(sadness + fear) > 0.5 and
|
171 |
-
sentiment == "supportive" and
|
172 |
-
all(p in ["recovery phase"] for p in patterns)
|
173 |
-
):
|
174 |
-
return "genuine vulnerability"
|
175 |
-
|
176 |
-
# 5. Emotional Threat
|
177 |
-
if (
|
178 |
-
(anger + disgust) > 0.5 and
|
179 |
-
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
|
180 |
-
sentiment == "undermining"
|
181 |
-
):
|
182 |
-
return "emotional threat"
|
183 |
-
|
184 |
-
# 6. Weaponized Sadness
|
185 |
-
if (
|
186 |
-
sadness > 0.6 and
|
187 |
-
any(p in patterns for p in ["guilt tripping", "projection"]) and
|
188 |
-
sentiment == "undermining"
|
189 |
-
):
|
190 |
-
return "weaponized sadness"
|
191 |
-
|
192 |
-
# 7. Toxic Resignation
|
193 |
-
if (
|
194 |
-
neutral > 0.5 and
|
195 |
-
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
|
196 |
-
sentiment == "undermining"
|
197 |
-
):
|
198 |
-
return "toxic resignation"
|
199 |
-
# 8. Aggressive Dismissal
|
200 |
-
if (
|
201 |
-
anger > 0.5 and
|
202 |
-
any(p in patterns for p in ["aggression", "insults", "control"]) and
|
203 |
-
sentiment == "undermining"
|
204 |
-
):
|
205 |
-
return "aggressive dismissal"
|
206 |
-
# 9. Deflective Hostility
|
207 |
-
if (
|
208 |
-
(0.2 < anger < 0.7 or 0.2 < disgust < 0.7) and
|
209 |
-
any(p in patterns for p in ["deflection", "projection"]) and
|
210 |
-
sentiment == "undermining"
|
211 |
-
):
|
212 |
-
return "deflective hostility"
|
213 |
-
# 10. Mocking Detachment
|
214 |
-
if (
|
215 |
-
(neutral + joy) > 0.5 and
|
216 |
-
any(p in patterns for p in ["mockery", "insults", "projection"]) and
|
217 |
-
sentiment == "undermining"
|
218 |
-
):
|
219 |
-
return "mocking detachment"
|
220 |
-
# 11. Contradictory Gaslight
|
221 |
-
if (
|
222 |
-
(joy + anger + sadness) > 0.5 and
|
223 |
-
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
|
224 |
-
sentiment == "undermining"
|
225 |
-
):
|
226 |
-
return "contradictory gaslight"
|
227 |
-
# 12. Calculated Neutrality
|
228 |
-
if (
|
229 |
-
neutral > 0.6 and
|
230 |
-
any(p in patterns for p in ["obscure language", "deflection", "dismissiveness"]) and
|
231 |
-
sentiment == "undermining"
|
232 |
-
):
|
233 |
-
return "calculated neutrality"
|
234 |
-
# 13. Forced Accountability Flip
|
235 |
-
if (
|
236 |
-
(anger + disgust) > 0.5 and
|
237 |
-
any(p in patterns for p in ["blame shifting", "manipulation", "projection"]) and
|
238 |
-
sentiment == "undermining"
|
239 |
-
):
|
240 |
-
return "forced accountability flip"
|
241 |
-
# 14. Conditional Affection
|
242 |
-
if (
|
243 |
-
joy > 0.4 and
|
244 |
-
any(p in patterns for p in ["apology baiting", "control", "recovery phase"]) and
|
245 |
-
sentiment == "undermining"
|
246 |
-
):
|
247 |
-
return "conditional affection"
|
248 |
-
|
249 |
-
if (
|
250 |
-
(anger + disgust) > 0.5 and
|
251 |
-
any(p in patterns for p in ["blame shifting", "projection", "deflection"]) and
|
252 |
-
sentiment == "undermining"
|
253 |
-
):
|
254 |
-
return "forced accountability flip"
|
255 |
-
|
256 |
-
# Emotional Instability Fallback
|
257 |
-
if (
|
258 |
-
(anger + sadness + disgust) > 0.6 and
|
259 |
-
sentiment == "undermining"
|
260 |
-
):
|
261 |
-
return "emotional instability"
|
262 |
-
|
263 |
-
return None
|
264 |
-
# 🔄 New DARVO score model (regression-based)
|
265 |
-
from torch.nn.functional import sigmoid
|
266 |
-
import torch
|
267 |
-
|
268 |
-
# Load your trained DARVO regressor from Hugging Face Hub
|
269 |
-
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
|
270 |
-
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
|
271 |
-
darvo_model.eval()
|
272 |
-
|
273 |
-
def predict_darvo_score(text):
|
274 |
-
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
275 |
-
with torch.no_grad():
|
276 |
-
logits = darvo_model(**inputs).logits
|
277 |
-
score = sigmoid(logits).item()
|
278 |
-
return round(score, 4) # Rounded for display/output
|
279 |
-
def detect_weapon_language(text):
|
280 |
-
weapon_keywords = [
|
281 |
-
"knife", "knives", "stab", "cut you", "cutting",
|
282 |
-
"gun", "shoot", "rifle", "firearm", "pistol",
|
283 |
-
"bomb", "blow up", "grenade", "explode",
|
284 |
-
"weapon", "armed", "loaded", "kill you", "take you out"
|
285 |
-
]
|
286 |
-
text_lower = text.lower()
|
287 |
-
return any(word in text_lower for word in weapon_keywords)
|
288 |
-
def get_risk_stage(patterns, sentiment):
|
289 |
-
if "insults" in patterns:
|
290 |
-
return 2
|
291 |
-
elif "recovery phase" in patterns:
|
292 |
-
return 3
|
293 |
-
elif "control" in patterns or "guilt tripping" in patterns:
|
294 |
-
return 1
|
295 |
-
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
|
296 |
-
return 4
|
297 |
-
return 1
|
298 |
-
|
299 |
-
def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
|
300 |
-
import re
|
301 |
-
|
302 |
-
# Extract aggression score if aggression is detected
|
303 |
-
if isinstance(top_label, str) and "aggression" in top_label.lower():
|
304 |
-
try:
|
305 |
-
match = re.search(r"\(?(\d+)\%?\)?", top_label)
|
306 |
-
aggression_score = int(match.group(1)) / 100 if match else 0
|
307 |
-
except:
|
308 |
-
aggression_score = 0
|
309 |
-
else:
|
310 |
-
aggression_score = 0
|
311 |
-
|
312 |
-
# Revised risk logic
|
313 |
-
if abuse_score >= 85 or escalation_score >= 16:
|
314 |
-
risk_level = "high"
|
315 |
-
elif abuse_score >= 60 or escalation_score >= 8 or aggression_score >= 0.25:
|
316 |
-
risk_level = "moderate"
|
317 |
-
elif stage == 2 and abuse_score >= 40:
|
318 |
-
risk_level = "moderate"
|
319 |
-
else:
|
320 |
-
risk_level = "low"
|
321 |
-
|
322 |
-
if isinstance(top_label, str) and " – " in top_label:
|
323 |
-
pattern_label, pattern_score = top_label.split(" – ")
|
324 |
-
else:
|
325 |
-
pattern_label = str(top_label) if top_label is not None else "Unknown"
|
326 |
-
pattern_score = ""
|
327 |
-
|
328 |
-
WHY_FLAGGED = {
|
329 |
-
"control": "This message may reflect efforts to restrict someone’s autonomy, even if it's framed as concern or care.",
|
330 |
-
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
|
331 |
-
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other person’s experience.",
|
332 |
-
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
|
333 |
-
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
|
334 |
-
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
|
335 |
-
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
|
336 |
-
"projection": "This message may involve attributing the abuser’s own behaviors to the victim.",
|
337 |
-
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
|
338 |
-
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
|
339 |
-
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
|
340 |
-
}
|
341 |
-
|
342 |
-
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
|
343 |
-
|
344 |
-
base = f"\n\n🛑 Risk Level: {risk_level.capitalize()}\n"
|
345 |
-
base += f"This message shows strong indicators of **{pattern_label}**. "
|
346 |
-
|
347 |
-
if risk_level == "high":
|
348 |
-
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
|
349 |
-
elif risk_level == "moderate":
|
350 |
-
base += "There are signs of emotional pressure or verbal aggression that may escalate if repeated.\n"
|
351 |
-
else:
|
352 |
-
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
|
353 |
-
|
354 |
-
base += f"\n💡 *Why this might be flagged:*\n{explanation}\n"
|
355 |
-
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
|
356 |
-
base += "🧠 You can review the pattern in context. This tool highlights possible dynamics—not judgments."
|
357 |
-
return base
|
358 |
-
|
359 |
-
|
360 |
-
# --- Step X: Detect Immediate Danger Threats ---
|
361 |
-
THREAT_MOTIFS = [
|
362 |
-
"i'll kill you", "i’m going to hurt you", "you’re dead", "you won't survive this",
|
363 |
-
"i’ll break your face", "i'll bash your head in", "i’ll snap your neck",
|
364 |
-
"i’ll come over there and make you shut up", "i'll knock your teeth out",
|
365 |
-
"you’re going to bleed", "you want me to hit you?", "i won’t hold back next time",
|
366 |
-
"i swear to god i’ll beat you", "next time, i won’t miss", "i’ll make you scream",
|
367 |
-
"i know where you live", "i'm outside", "i’ll be waiting", "i saw you with him",
|
368 |
-
"you can’t hide from me", "i’m coming to get you", "i'll find you", "i know your schedule",
|
369 |
-
"i watched you leave", "i followed you home", "you'll regret this", "you’ll be sorry",
|
370 |
-
"you’re going to wish you hadn’t", "you brought this on yourself", "don’t push me",
|
371 |
-
"you have no idea what i’m capable of", "you better watch yourself",
|
372 |
-
"i don’t care what happens to you anymore", "i’ll make you suffer", "you’ll pay for this",
|
373 |
-
"i’ll never let you go", "you’re nothing without me", "if you leave me, i’ll kill myself",
|
374 |
-
"i'll ruin you", "i'll tell everyone what you did", "i’ll make sure everyone knows",
|
375 |
-
"i’m going to destroy your name", "you’ll lose everyone", "i’ll expose you",
|
376 |
-
"your friends will hate you", "i’ll post everything", "you’ll be cancelled",
|
377 |
-
"you’ll lose everything", "i’ll take the house", "i’ll drain your account",
|
378 |
-
"you’ll never see a dime", "you’ll be broke when i’m done", "i’ll make sure you lose your job",
|
379 |
-
"i’ll take your kids", "i’ll make sure you have nothing", "you can’t afford to leave me",
|
380 |
-
"don't make me do this", "you know what happens when i’m mad", "you’re forcing my hand",
|
381 |
-
"if you just behaved, this wouldn’t happen", "this is your fault",
|
382 |
-
"you’re making me hurt you", "i warned you", "you should have listened"
|
383 |
-
]
|
384 |
-
|
385 |
-
|
386 |
-
@spaces.GPU
|
387 |
-
def compute_abuse_score(matched_scores, sentiment):
|
388 |
-
"""
|
389 |
-
Compute abuse score with more conservative adjustments.
|
390 |
-
"""
|
391 |
-
if not matched_scores:
|
392 |
-
return 0.0
|
393 |
-
|
394 |
-
sorted_scores = sorted(matched_scores, key=lambda x: x[1], reverse=True)
|
395 |
-
highest_score = sorted_scores[0][1]
|
396 |
-
num_patterns = len(matched_scores)
|
397 |
-
|
398 |
-
# Scale down base score more aggressively if multiple patterns are present
|
399 |
-
if num_patterns > 1:
|
400 |
-
highest_score *= (1 - (num_patterns - 1) * 0.2) # Reduce by 20% for each additional pattern
|
401 |
-
|
402 |
-
base_score = highest_score * 100
|
403 |
-
|
404 |
-
critical_patterns = {
|
405 |
-
'gaslighting': 1.4, # Reduced
|
406 |
-
'guilt tripping': 1.3, # Reduced
|
407 |
-
'blame shifting': 1.2, # Reduced
|
408 |
-
'control': 1.3, # Reduced
|
409 |
-
'insults': 1.1, # Reduced
|
410 |
-
'manipulation': 1.2,
|
411 |
-
'love bombing': 1.2,
|
412 |
-
'emotional blackmail': 1.4,
|
413 |
-
'dismissiveness': 1.1,
|
414 |
-
'contradictory statements': 1.1
|
415 |
-
}
|
416 |
-
|
417 |
-
for label, score, _ in matched_scores:
|
418 |
-
if label in critical_patterns and score > 0.5:
|
419 |
-
base_score *= critical_patterns[label]
|
420 |
-
|
421 |
-
# Further reduce combination multipliers
|
422 |
-
if len(matched_scores) >= 2:
|
423 |
-
base_score *= 1.1 # Reduced
|
424 |
-
if len(matched_scores) >= 3:
|
425 |
-
base_score *= 1.05 # Reduced
|
426 |
-
|
427 |
-
# Reduce high confidence boost
|
428 |
-
if any(score > 0.8 for _, score, _ in matched_scores):
|
429 |
-
base_score *= 1.05 # Reduced
|
430 |
-
|
431 |
-
def get_sentiment_predictions(texts, sentiment_model, sentiment_tokenizer, batch_size=16):
|
432 |
-
predictions = []
|
433 |
-
for i in tqdm(range(0, len(texts), batch_size), desc="Predicting sentiment"):
|
434 |
-
batch = texts[i:i+batch_size]
|
435 |
-
inputs = sentiment_tokenizer(batch, return_tensors="pt", truncation=True, padding=True, max_length=128).to(device)
|
436 |
-
with torch.no_grad(): # Correct indentation
|
437 |
-
outputs = sentiment_model(**inputs) # Indent within 'with' block
|
438 |
-
logits = outputs.logits # Indent within 'with' block
|
439 |
-
predicted_classes = logits.argmax(dim=-1).tolist() # Indent within 'with' block
|
440 |
-
predictions.extend(predicted_classes) # Indent within 'with' block
|
441 |
-
return predictions
|
442 |
-
|
443 |
-
# Reduce minimum score and threshold for activation
|
444 |
-
if any(score > 0.9 for _, score, _ in matched_scores): # Higher threshold
|
445 |
-
base_score = max(base_score, 75.0) # Reduced
|
446 |
-
elif any(score > 0.7 for _, score, _ in matched_scores): # Moderate threshold
|
447 |
-
base_score = max(base_score, 60.0) # Reduced
|
448 |
-
|
449 |
-
return min(round(base_score, 1), 100.0)
|
450 |
-
@lru_cache(maxsize=1024)
|
451 |
-
def analyze_single_message(text, thresholds):
|
452 |
-
print("⚡ ENTERED analyze_single_message")
|
453 |
-
stage = 1
|
454 |
-
motif_hits, matched_phrases = detect_motifs(text)
|
455 |
-
|
456 |
-
# Get emotion profile
|
457 |
-
emotion_profile = get_emotion_profile(text)
|
458 |
-
sentiment_score = emotion_profile.get("anger", 0) + emotion_profile.get("disgust", 0)
|
459 |
-
|
460 |
-
# Get model scores
|
461 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device) # Move to device
|
462 |
-
with torch.no_grad():
|
463 |
-
outputs = model(**inputs)
|
464 |
-
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
465 |
-
|
466 |
-
# Sentiment override
|
467 |
-
if emotion_profile.get("neutral", 0) > 0.85 and any(
|
468 |
-
scores[LABELS.index(l)] > thresholds[l]
|
469 |
-
for l in ["control", "blame shifting"]
|
470 |
-
):
|
471 |
-
sentiment = "undermining"
|
472 |
-
else:
|
473 |
-
sentiment = "undermining" if sentiment_score > 0.25 else "supportive"
|
474 |
-
|
475 |
-
weapon_flag = detect_weapon_language(text)
|
476 |
-
|
477 |
-
adjusted_thresholds = {k: v + 0.05 if sentiment == "supportive" else v for k, v in thresholds.items()}
|
478 |
-
darvo_score = predict_darvo_score(text)
|
479 |
-
|
480 |
-
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
481 |
-
|
482 |
-
# Calculate matched scores *before* early exit
|
483 |
-
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
484 |
-
|
485 |
-
# Early exit if nothing passed, but return tone_tag as None
|
486 |
-
if not threshold_labels:
|
487 |
-
return 0.0, [], [], {"label": sentiment}, 1, 0.0, None # Return None for tone_tag
|
488 |
-
|
489 |
-
top_patterns = sorted(
|
490 |
-
[(label, score) for label, score in zip(LABELS, scores)],
|
491 |
-
key=lambda x: x[1],
|
492 |
-
reverse=True
|
493 |
-
)[:2]
|
494 |
-
|
495 |
-
matched_scores = [
|
496 |
-
(label, score, PATTERN_WEIGHTS.get(label, 1.0))
|
497 |
-
for label, score in zip(LABELS, scores)
|
498 |
-
if score > adjusted_thresholds[label]
|
499 |
-
]
|
500 |
-
|
501 |
-
|
502 |
-
# Cap subtle insults to avoid excessive abuse score
|
503 |
-
if (
|
504 |
-
len(threshold_labels) == 1 and "insults" in threshold_labels
|
505 |
-
and emotion_profile.get("neutral", 0) > 0.85
|
506 |
-
):
|
507 |
-
abuse_score_raw = min(abuse_score_raw, 40)
|
508 |
-
|
509 |
-
# Abuse score
|
510 |
-
abuse_score_raw = compute_abuse_score(matched_scores, sentiment)
|
511 |
-
|
512 |
-
# Weapon adjustment
|
513 |
-
if weapon_flag:
|
514 |
-
abuse_score_raw = min(abuse_score_raw + 25, 100)
|
515 |
-
if stage < 2:
|
516 |
-
stage = 2
|
517 |
-
|
518 |
-
abuse_score = min(abuse_score_raw, 100 if "control" in threshold_labels else 95)
|
519 |
-
|
520 |
-
# Tone tag
|
521 |
-
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, abuse_score)
|
522 |
-
|
523 |
-
# Remove recovery tag if tone is fake
|
524 |
-
if "recovery" in threshold_labels and tone_tag == "forced accountability flip":
|
525 |
-
threshold_labels.remove("recovery")
|
526 |
-
top_patterns = [p for p in top_patterns if p[0] != "recovery"]
|
527 |
-
print("⚠️ Removing 'recovery' due to undermining sentiment (not genuine repair)")
|
528 |
-
|
529 |
-
# Override profanity/anger for short texts
|
530 |
-
profane_words = {"fuck", "fucking", "bitch", "shit", "cunt", "ho", "asshole", "dick", "whore", "slut"}
|
531 |
-
tokens = set(text.lower().split())
|
532 |
-
has_profane = any(word in tokens for word in profane_words)
|
533 |
-
short_text = len(tokens) <= 10
|
534 |
-
anger_score = emotion_profile.get("anger", 0)
|
535 |
-
if has_profane and anger_score > 0.75 and short_text:
|
536 |
-
print("⚠️ Profanity + Anger Override Triggered")
|
537 |
-
insult_score = next((s for l, s in top_patterns if l == "insults"), 0)
|
538 |
-
if ("insults", insult_score) not in top_patterns:
|
539 |
-
top_patterns = [("insults", insult_score)] + top_patterns
|
540 |
-
if "insults" not in threshold_labels:
|
541 |
-
threshold_labels.append("insults")
|
542 |
-
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
|
543 |
-
# Debug
|
544 |
-
print(f"Emotional Tone Tag: {tone_tag}")
|
545 |
-
print("Emotion Profile:")
|
546 |
-
for emotion, score in emotion_profile.items():
|
547 |
-
print(f" {emotion.capitalize():10}: {score}")
|
548 |
-
print("\n--- Debug Info ---")
|
549 |
-
print(f"Text: {text}")
|
550 |
-
print(f"Sentiment (via emotion): {sentiment} (score: {round(sentiment_score, 3)})")
|
551 |
-
print("Abuse Pattern Scores:")
|
552 |
-
for label, score in zip(LABELS, scores):
|
553 |
-
passed = "✅" if score > adjusted_thresholds[label] else "❌"
|
554 |
-
print(f" {label:25} → {score:.3f} {passed}")
|
555 |
-
print(f"Matched for score: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
|
556 |
-
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
|
557 |
-
print("------------------\n")
|
558 |
-
|
559 |
-
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
|
560 |
-
|
561 |
-
import spaces
|
562 |
-
|
563 |
-
@spaces.GPU
|
564 |
-
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
565 |
-
from collections import Counter
|
566 |
-
|
567 |
-
none_selected_checked = answers_and_none[-1]
|
568 |
-
responses_checked = any(answers_and_none[:-1])
|
569 |
-
none_selected = not responses_checked and none_selected_checked
|
570 |
-
|
571 |
-
if none_selected:
|
572 |
-
escalation_score = 0
|
573 |
-
escalation_note = "Checklist completed: no danger items reported."
|
574 |
-
escalation_completed = True
|
575 |
-
elif responses_checked:
|
576 |
-
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
|
577 |
-
escalation_note = "Checklist completed."
|
578 |
-
escalation_completed = True
|
579 |
-
else:
|
580 |
-
escalation_score = None
|
581 |
-
escalation_note = "Checklist not completed."
|
582 |
-
escalation_completed = False
|
583 |
-
|
584 |
-
messages = [msg1, msg2, msg3]
|
585 |
-
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
|
586 |
-
if not active:
|
587 |
-
return "Please enter at least one message.", None
|
588 |
-
|
589 |
-
# Flag any threat phrases present in the messages
|
590 |
-
import re
|
591 |
-
|
592 |
-
def normalize(text):
|
593 |
-
import unicodedata
|
594 |
-
text = text.lower().strip()
|
595 |
-
text = unicodedata.normalize("NFKD", text) # handles curly quotes
|
596 |
-
text = text.replace("’", "'") # smart to straight
|
597 |
-
return re.sub(r"[^a-z0-9 ]", "", text)
|
598 |
-
|
599 |
-
def detect_threat_motifs(message, motif_list):
|
600 |
-
norm_msg = normalize(message)
|
601 |
-
return [
|
602 |
-
motif for motif in motif_list
|
603 |
-
if normalize(motif) in norm_msg
|
604 |
-
]
|
605 |
-
|
606 |
-
# Collect matches per message
|
607 |
-
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
|
608 |
-
flat_threats = [t for sublist in immediate_threats for t in sublist]
|
609 |
-
threat_risk = "Yes" if flat_threats else "No"
|
610 |
-
results = [(analyze_single_message(m, THRESHOLDS.copy()), d) for m, d in active]
|
611 |
-
|
612 |
-
abuse_scores = [r[0][0] for r in results]
|
613 |
-
stages = [r[0][4] for r in results]
|
614 |
-
darvo_scores = [r[0][5] for r in results]
|
615 |
-
tone_tags = [r[0][6] for r in results]
|
616 |
-
dates_used = [r[1] for r in results]
|
617 |
-
|
618 |
-
predicted_labels = [label for r in results for label, _ in r[0][2]]
|
619 |
-
high = {'control'}
|
620 |
-
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 'contradictory statements', 'guilt tripping'}
|
621 |
-
low = {'blame shifting', 'projection', 'recovery phase'}
|
622 |
-
counts = {'high': 0, 'moderate': 0, 'low': 0}
|
623 |
-
for label in predicted_labels:
|
624 |
-
if label in high:
|
625 |
-
counts['high'] += 1
|
626 |
-
elif label in moderate:
|
627 |
-
counts['moderate'] += 1
|
628 |
-
elif label in low:
|
629 |
-
counts['low'] += 1
|
630 |
-
|
631 |
-
# Pattern escalation logic
|
632 |
-
pattern_escalation_risk = "Low"
|
633 |
-
if counts['high'] >= 2 and counts['moderate'] >= 2:
|
634 |
-
pattern_escalation_risk = "Critical"
|
635 |
-
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or (counts['moderate'] >= 3) or (counts['high'] >= 1 and counts['moderate'] >= 2):
|
636 |
-
pattern_escalation_risk = "High"
|
637 |
-
elif (counts['moderate'] == 2) or (counts['high'] == 1 and counts['moderate'] == 1) or (counts['moderate'] == 1 and counts['low'] >= 2) or (counts['high'] == 1 and sum(counts.values()) == 1):
|
638 |
-
pattern_escalation_risk = "Moderate"
|
639 |
-
|
640 |
-
checklist_escalation_risk = "Unknown" if escalation_score is None else (
|
641 |
-
"Critical" if escalation_score >= 20 else
|
642 |
-
"Moderate" if escalation_score >= 10 else
|
643 |
-
"Low"
|
644 |
-
)
|
645 |
-
|
646 |
-
escalation_bump = 0
|
647 |
-
for result, _ in results:
|
648 |
-
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
|
649 |
-
if darvo_score > 0.65:
|
650 |
-
escalation_bump += 3
|
651 |
-
if tone_tag in ["forced accountability flip", "emotional threat"]:
|
652 |
-
escalation_bump += 2
|
653 |
-
if abuse_score > 80:
|
654 |
-
escalation_bump += 2
|
655 |
-
if stage == 2:
|
656 |
-
escalation_bump += 3
|
657 |
-
|
658 |
-
def rank(label):
|
659 |
-
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
|
660 |
-
|
661 |
-
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
|
662 |
-
escalation_risk = (
|
663 |
-
"Critical" if combined_score >= 6 else
|
664 |
-
"High" if combined_score >= 4 else
|
665 |
-
"Moderate" if combined_score >= 2 else
|
666 |
-
"Low"
|
667 |
-
)
|
668 |
-
|
669 |
-
none_selected_checked = answers_and_none[-1]
|
670 |
-
responses_checked = any(answers_and_none[:-1])
|
671 |
-
none_selected = not responses_checked and none_selected_checked
|
672 |
-
|
673 |
-
# Determine escalation_score
|
674 |
-
if none_selected:
|
675 |
-
escalation_score = 0
|
676 |
-
escalation_completed = True
|
677 |
-
elif responses_checked:
|
678 |
-
escalation_score = sum(
|
679 |
-
w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a
|
680 |
-
)
|
681 |
-
escalation_completed = True
|
682 |
-
else:
|
683 |
-
escalation_score = None
|
684 |
-
escalation_completed = False
|
685 |
-
|
686 |
-
# Build escalation_text and hybrid_score
|
687 |
-
if escalation_score is None:
|
688 |
-
escalation_text = (
|
689 |
-
"🚫 **Escalation Potential: Unknown** (Checklist not completed)\n"
|
690 |
-
"⚠️ This section was not completed. Escalation potential is estimated using message data only.\n"
|
691 |
-
)
|
692 |
-
hybrid_score = 0
|
693 |
-
elif escalation_score == 0:
|
694 |
-
escalation_text = (
|
695 |
-
"✅ **Escalation Checklist Completed:** No danger items reported.\n"
|
696 |
-
"🧭 **Escalation potential estimated from detected message patterns only.**\n"
|
697 |
-
f"• Pattern Risk: {pattern_escalation_risk}\n"
|
698 |
-
f"• Checklist Risk: None reported\n"
|
699 |
-
f"• Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
|
700 |
-
)
|
701 |
-
hybrid_score = escalation_bump
|
702 |
-
else:
|
703 |
-
hybrid_score = escalation_score + escalation_bump
|
704 |
-
escalation_text = (
|
705 |
-
f"📈 **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
|
706 |
-
"📋 This score combines your safety checklist answers *and* detected high-risk behavior.\n"
|
707 |
-
f"• Pattern Risk: {pattern_escalation_risk}\n"
|
708 |
-
f"• Checklist Risk: {checklist_escalation_risk}\n"
|
709 |
-
f"• Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
|
710 |
-
)
|
711 |
-
# Composite Abuse Score
|
712 |
-
composite_abuse_scores = []
|
713 |
-
for result, _ in results:
|
714 |
-
_, _, top_patterns, sentiment, _, _, _ = result
|
715 |
-
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in top_patterns]
|
716 |
-
final_score = compute_abuse_score(matched_scores, sentiment["label"])
|
717 |
-
composite_abuse_scores.append(final_score)
|
718 |
-
composite_abuse = int(round(sum(composite_abuse_scores) / len(composite_abuse_scores)))
|
719 |
-
|
720 |
-
most_common_stage = max(set(stages), key=stages.count)
|
721 |
-
stage_text = RISK_STAGE_LABELS[most_common_stage]
|
722 |
-
# Derive top label list for each message
|
723 |
-
# safe derive top_labels
|
724 |
-
top_labels = []
|
725 |
-
for result, _ in results:
|
726 |
-
threshold_labels = result[1]
|
727 |
-
top_patterns = result[2]
|
728 |
-
if threshold_labels:
|
729 |
-
top_labels.append(threshold_labels[0])
|
730 |
-
elif top_patterns:
|
731 |
-
top_labels.append(top_patterns[0][0])
|
732 |
-
else:
|
733 |
-
top_labels.append("none") # or whatever default you prefer
|
734 |
-
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
735 |
-
darvo_blurb = ""
|
736 |
-
if avg_darvo > 0.25:
|
737 |
-
level = "moderate" if avg_darvo < 0.65 else "high"
|
738 |
-
darvo_blurb = f"\n\n🎭 **DARVO Score: {avg_darvo}** → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
739 |
-
|
740 |
-
out = f"Abuse Intensity: {composite_abuse}%\n"
|
741 |
-
out += "📊 This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
|
742 |
-
out += generate_risk_snippet(composite_abuse, top_labels[0], hybrid_score, most_common_stage)
|
743 |
-
out += f"\n\n{stage_text}"
|
744 |
-
out += darvo_blurb
|
745 |
-
out += "\n\n🎭 **Emotional Tones Detected:**\n"
|
746 |
-
for i, tone in enumerate(tone_tags):
|
747 |
-
out += f"• Message {i+1}: *{tone or 'none'}*\n"
|
748 |
-
# --- Add Immediate Danger Threats section
|
749 |
-
if flat_threats:
|
750 |
-
out += "\n\n🚨 **Immediate Danger Threats Detected:**\n"
|
751 |
-
for t in set(flat_threats):
|
752 |
-
out += f"• \"{t}\"\n"
|
753 |
-
out += "\n⚠️ These phrases may indicate an imminent risk to physical safety."
|
754 |
-
else:
|
755 |
-
out += "\n\n🧩 **Immediate Danger Threats:** None explicitly detected.\n"
|
756 |
-
out += "This does *not* rule out risk, but no direct threat phrases were matched."
|
757 |
-
pattern_labels = [
|
758 |
-
pats[0][0] if (pats := r[0][2]) else "none"
|
759 |
-
for r in results
|
760 |
-
]
|
761 |
-
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, top_labels)
|
762 |
-
out += "\n\n" + escalation_text
|
763 |
-
return out, timeline_image
|
764 |
-
|
765 |
-
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
766 |
-
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
767 |
-
none_box = gr.Checkbox(label="None of the above")
|
768 |
-
|
769 |
-
|
770 |
-
# ─── FINAL “FORCE LAUNCH” (no guards) ────────────────────────
|
771 |
-
|
772 |
-
demo = gr.Interface(
|
773 |
-
fn=analyze_composite,
|
774 |
-
inputs=textbox_inputs + quiz_boxes + [none_box],
|
775 |
-
outputs=[
|
776 |
-
gr.Textbox(label="Results"),
|
777 |
-
gr.Image(label="Abuse Score Timeline", type="pil")
|
778 |
-
],
|
779 |
-
title="Abuse Pattern Detector + Escalation Quiz",
|
780 |
-
description=(
|
781 |
-
"Enter up to three messages that concern you. "
|
782 |
-
"For the most accurate results, include messages from a recent emotionally intense period."
|
783 |
-
),
|
784 |
-
flagging_mode="manual"
|
785 |
-
)
|
786 |
-
# This single call will start the server and block,
|
787 |
-
# keeping the container alive on Spaces.
|
788 |
-
demo.launch()
|
789 |
-
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|