Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -98,152 +98,60 @@ def generate_risk_snippet(abuse_score, top_label):
|
|
98 |
title, summary, advice = RISK_SNIPPETS[risk_level]
|
99 |
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
100 |
|
101 |
-
# ---
|
102 |
-
|
103 |
-
"
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"you
|
|
|
|
|
|
|
110 |
]
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
contradiction_phrases = [
|
115 |
-
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
116 |
-
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
117 |
-
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
118 |
-
(r"\b(do what you want).{0,15}(you’ll regret it|i always give everything)", re.IGNORECASE),
|
119 |
-
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
120 |
-
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE),
|
121 |
-
]
|
122 |
-
for pattern, flags in contradiction_phrases:
|
123 |
-
if re.search(pattern, message, flags):
|
124 |
-
contradiction_flag = True
|
125 |
-
break
|
126 |
-
return contradiction_flag
|
127 |
-
|
128 |
-
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
129 |
-
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
|
130 |
-
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
131 |
-
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
132 |
-
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
133 |
-
motif_score = motif_hits / len(DARVO_MOTIFS)
|
134 |
-
contradiction_score = 1.0 if contradiction_flag else 0.0
|
135 |
-
darvo_score = (
|
136 |
-
0.3 * pattern_score +
|
137 |
-
0.3 * sentiment_shift_score +
|
138 |
-
0.25 * motif_score +
|
139 |
-
0.15 * contradiction_score
|
140 |
-
)
|
141 |
-
return round(min(darvo_score, 1.0), 3)
|
142 |
-
|
143 |
-
# --- Sentiment Function ---
|
144 |
-
def custom_sentiment(text):
|
145 |
-
input_ids = sentiment_tokenizer(f"emotion: {text}", return_tensors="pt").input_ids
|
146 |
-
with torch.no_grad():
|
147 |
-
outputs = sentiment_model.generate(input_ids)
|
148 |
-
emotion = sentiment_tokenizer.decode(outputs[0], skip_special_tokens=True).strip().lower()
|
149 |
-
sentiment = EMOTION_TO_SENTIMENT.get(emotion, "undermining")
|
150 |
-
return {"label": sentiment, "emotion": emotion}
|
151 |
|
152 |
-
# ---
|
153 |
-
def
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
base_score *= flag_multiplier
|
158 |
-
return min(base_score, 100.0)
|
159 |
|
160 |
-
#
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
phrase_labels = [label for label, _ in matched_phrases]
|
173 |
-
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
174 |
-
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
175 |
-
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
176 |
-
motif_phrases = [text for _, text in matched_phrases]
|
177 |
-
contradiction_flag = detect_contradiction(text)
|
178 |
-
darvo_score = calculate_darvo_score(pattern_labels_used, 0.0, sentiment_score, motif_phrases, contradiction_flag)
|
179 |
-
return abuse_level, pattern_labels_used, top_patterns, darvo_score, sentiment
|
180 |
|
181 |
-
#
|
182 |
-
def analyze_composite(msg1, msg2, msg3, flags):
|
183 |
thresholds = THRESHOLDS.copy()
|
184 |
messages = [msg1, msg2, msg3]
|
185 |
-
|
186 |
-
if not
|
187 |
return "Please enter at least one message."
|
188 |
|
189 |
-
results = []
|
190 |
-
sentiment_labels = []
|
191 |
-
sentiment_score_total = 0.0
|
192 |
-
|
193 |
-
for m in active_messages:
|
194 |
-
result = analyze_single_message(m, thresholds, flags)
|
195 |
-
results.append(result)
|
196 |
-
sentiment_labels.append(result[4]["label"])
|
197 |
-
if result[4]["label"] == "undermining":
|
198 |
-
sentiment_score_total += 0.5
|
199 |
-
|
200 |
-
# Conflicting tone logic
|
201 |
-
undermining_count = sentiment_labels.count("undermining")
|
202 |
-
supportive_count = sentiment_labels.count("supportive")
|
203 |
-
|
204 |
-
if undermining_count > supportive_count:
|
205 |
-
thresholds = {k: v * 0.9 for k, v in thresholds.items()}
|
206 |
-
elif undermining_count and supportive_count:
|
207 |
-
thresholds = {k: v * 0.95 for k, v in thresholds.items()}
|
208 |
-
print("⚖️ Detected conflicting sentiment across messages.")
|
209 |
-
|
210 |
abuse_scores = [r[0] for r in results]
|
211 |
-
|
212 |
-
|
213 |
-
base_score = sum(abuse_scores) / len(abuse_scores)
|
214 |
-
|
215 |
-
label_sets = [[label for label, _ in r[2]] for r in results]
|
216 |
-
label_counts = {label: sum(label in s for s in label_sets) for label in set().union(*label_sets)}
|
217 |
-
top_label = max(label_counts.items(), key=lambda x: x[1])
|
218 |
-
top_explanation = EXPLANATIONS.get(top_label[0], "")
|
219 |
-
|
220 |
-
flag_weights = {
|
221 |
-
"They've threatened harm": 6,
|
222 |
-
"They isolate me": 5,
|
223 |
-
"I’ve changed my behavior out of fear": 4,
|
224 |
-
"They monitor/follow me": 4,
|
225 |
-
"I feel unsafe when alone with them": 6
|
226 |
-
}
|
227 |
-
flag_boost = sum(flag_weights.get(f, 3) for f in flags) / len(active_messages)
|
228 |
-
composite_score = min(base_score + flag_boost, 100)
|
229 |
-
if len(active_messages) == 1:
|
230 |
-
composite_score *= 0.85
|
231 |
-
elif len(active_messages) == 2:
|
232 |
-
composite_score *= 0.93
|
233 |
-
composite_score = round(min(composite_score, 100), 2)
|
234 |
-
|
235 |
-
result = f"These messages show a pattern of **{top_label[0]}** and are estimated to be {composite_score}% likely abusive."
|
236 |
-
if top_explanation:
|
237 |
-
result += f"\n• {top_explanation}"
|
238 |
-
if average_darvo > 0.25:
|
239 |
-
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
240 |
-
result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
241 |
-
result += generate_risk_snippet(composite_score, top_label[0])
|
242 |
-
|
243 |
-
if undermining_count and supportive_count:
|
244 |
-
result += "\n\n⚖️ These messages contain **conflicting emotional tones** — this may indicate mixed signals, ambivalence, or a push-pull dynamic. Use caution interpreting any one message alone."
|
245 |
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# --- Gradio Interface ---
|
249 |
textbox_inputs = [
|
@@ -252,18 +160,17 @@ textbox_inputs = [
|
|
252 |
gr.Textbox(label="Message 3")
|
253 |
]
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
])
|
259 |
|
260 |
iface = gr.Interface(
|
261 |
fn=analyze_composite,
|
262 |
-
inputs=textbox_inputs + [
|
263 |
outputs=gr.Textbox(label="Results"),
|
264 |
-
title="Abuse Pattern Detector
|
265 |
allow_flagging="manual"
|
266 |
)
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
-
iface.launch()
|
|
|
98 |
title, summary, advice = RISK_SNIPPETS[risk_level]
|
99 |
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
100 |
|
101 |
+
# --- Escalation Quiz Questions & Weights ---
|
102 |
+
ESCALATION_QUESTIONS = [
|
103 |
+
("Partner has access to firearms or weapons", 4),
|
104 |
+
("Partner threatened to kill you", 3),
|
105 |
+
("Partner threatened you with a weapon", 3),
|
106 |
+
("Partner ever choked or strangled you", 4),
|
107 |
+
("Partner injured or threatened your pet(s)", 3),
|
108 |
+
("Partner destroyed property to intimidate you", 2),
|
109 |
+
("Partner forced you into unwanted sexual acts", 3),
|
110 |
+
("Partner threatened to take away your children", 2),
|
111 |
+
("Violence has increased in frequency or severity", 3),
|
112 |
+
("Partner monitors your calls/GPS/social media", 2)
|
113 |
]
|
114 |
|
115 |
+
# --- Core Analysis Functions (unchanged) ---
|
116 |
+
# ... (analyze_single_message, calculate_darvo_score, etc.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# --- Composite Analysis with Escalation Quiz ---
|
119 |
+
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
120 |
+
# split args: first len(ESCALATION_QUESTIONS) are checkboxes, last is none_of_above
|
121 |
+
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
122 |
+
none_selected = answers_and_none[-1]
|
|
|
|
|
123 |
|
124 |
+
# compute escalation score
|
125 |
+
if none_selected:
|
126 |
+
escalation_score = 0
|
127 |
+
else:
|
128 |
+
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, responses) if a)
|
129 |
+
# bucket
|
130 |
+
if escalation_score >= 16:
|
131 |
+
escalation_level = "High"
|
132 |
+
elif escalation_score >= 8:
|
133 |
+
escalation_level = "Moderate"
|
134 |
+
else:
|
135 |
+
escalation_level = "Low"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# existing abuse analysis
|
|
|
138 |
thresholds = THRESHOLDS.copy()
|
139 |
messages = [msg1, msg2, msg3]
|
140 |
+
active = [m for m in messages if m.strip()]
|
141 |
+
if not active:
|
142 |
return "Please enter at least one message."
|
143 |
|
144 |
+
results = [analyze_single_message(m, thresholds, []) for m in active]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
abuse_scores = [r[0] for r in results]
|
146 |
+
top_pattern = max({label for r in results for label in r[2]}, key=lambda l: abuse_scores[0])
|
147 |
+
composite_abuse = round(sum(abuse_scores)/len(abuse_scores),2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
# build output
|
150 |
+
out = f"Abuse Intensity: {composite_abuse}%\n"
|
151 |
+
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _,w in ESCALATION_QUESTIONS)})"
|
152 |
+
# abuse snippet
|
153 |
+
out += generate_risk_snippet(composite_abuse, top_pattern)
|
154 |
+
return out
|
155 |
|
156 |
# --- Gradio Interface ---
|
157 |
textbox_inputs = [
|
|
|
160 |
gr.Textbox(label="Message 3")
|
161 |
]
|
162 |
|
163 |
+
# Escalation quiz inputs
|
164 |
+
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
165 |
+
none_box = gr.Checkbox(label="None of the above")
|
|
|
166 |
|
167 |
iface = gr.Interface(
|
168 |
fn=analyze_composite,
|
169 |
+
inputs=textbox_inputs + quiz_boxes + [none_box],
|
170 |
outputs=gr.Textbox(label="Results"),
|
171 |
+
title="Abuse Pattern Detector + Escalation Quiz",
|
172 |
allow_flagging="manual"
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
iface.launch()
|