Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -56,6 +56,34 @@ PATTERN_WEIGHTS = {
|
|
| 56 |
"contradictory statements": 0.75
|
| 57 |
}
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# --- DARVO Detection Tools ---
|
| 60 |
DARVO_PATTERNS = {
|
| 61 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
|
@@ -97,7 +125,6 @@ def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_fo
|
|
| 97 |
)
|
| 98 |
return round(min(darvo_score, 1.0), 3)
|
| 99 |
|
| 100 |
-
|
| 101 |
def custom_sentiment(text):
|
| 102 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 103 |
with torch.no_grad():
|
|
@@ -168,6 +195,7 @@ def analyze_composite(msg1, msg2, msg3, flags):
|
|
| 168 |
if average_darvo > 0.25:
|
| 169 |
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
| 170 |
result += f"\n\nDARVO Score: {average_darvo} β This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
|
|
|
| 171 |
return result
|
| 172 |
|
| 173 |
textbox_inputs = [
|
|
|
|
| 56 |
"contradictory statements": 0.75
|
| 57 |
}
|
| 58 |
|
| 59 |
+
RISK_SNIPPETS = {
|
| 60 |
+
"low": (
|
| 61 |
+
"π’ Risk Level: Low",
|
| 62 |
+
"The language patterns here do not strongly indicate abuse.",
|
| 63 |
+
"Continue to check in with yourself and notice how you feel in response to repeated patterns."
|
| 64 |
+
),
|
| 65 |
+
"moderate": (
|
| 66 |
+
"β οΈ Risk Level: Moderate to High",
|
| 67 |
+
"This language includes control, guilt, or reversal tactics.",
|
| 68 |
+
"These patterns often lead to emotional confusion and reduced self-trust. Document these messages or talk with someone safe."
|
| 69 |
+
),
|
| 70 |
+
"high": (
|
| 71 |
+
"π Risk Level: High",
|
| 72 |
+
"Language includes threats or coercive control, which are strong indicators of escalation.",
|
| 73 |
+
"Consider creating a safety plan or contacting a support line. Trust your sense of unease."
|
| 74 |
+
)
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
def generate_risk_snippet(abuse_score, top_label):
|
| 78 |
+
if abuse_score >= 85:
|
| 79 |
+
risk_level = "high"
|
| 80 |
+
elif abuse_score >= 60:
|
| 81 |
+
risk_level = "moderate"
|
| 82 |
+
else:
|
| 83 |
+
risk_level = "low"
|
| 84 |
+
title, summary, advice = RISK_SNIPPETS[risk_level]
|
| 85 |
+
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\nπ‘ {advice}"
|
| 86 |
+
|
| 87 |
# --- DARVO Detection Tools ---
|
| 88 |
DARVO_PATTERNS = {
|
| 89 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
|
|
|
| 125 |
)
|
| 126 |
return round(min(darvo_score, 1.0), 3)
|
| 127 |
|
|
|
|
| 128 |
def custom_sentiment(text):
|
| 129 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 130 |
with torch.no_grad():
|
|
|
|
| 195 |
if average_darvo > 0.25:
|
| 196 |
darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
|
| 197 |
result += f"\n\nDARVO Score: {average_darvo} β This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
| 198 |
+
result += generate_risk_snippet(composite_score, top_label[0])
|
| 199 |
return result
|
| 200 |
|
| 201 |
textbox_inputs = [
|