Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,10 +22,10 @@ LABELS = [
|
|
22 |
]
|
23 |
|
24 |
THRESHOLDS = {
|
25 |
-
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.
|
26 |
-
"apology_baiting": 0.
|
27 |
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
|
28 |
-
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.
|
29 |
}
|
30 |
|
31 |
PATTERN_LABELS = LABELS[:15]
|
@@ -63,11 +63,23 @@ def custom_sentiment(text):
|
|
63 |
score = probs[0][label_idx].item()
|
64 |
return {"label": label, "score": score}
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
72 |
motif_hits = motif_hits or []
|
73 |
if any(label in motif_hits for label in {"physical_threat", "suicidal_threat", "extreme_control"}):
|
|
|
22 |
]
|
23 |
|
24 |
THRESHOLDS = {
|
25 |
+
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
|
26 |
+
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
|
27 |
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
|
28 |
+
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.30
|
29 |
}
|
30 |
|
31 |
PATTERN_LABELS = LABELS[:15]
|
|
|
63 |
score = probs[0][label_idx].item()
|
64 |
return {"label": label, "score": score}
|
65 |
|
66 |
+
PATTERN_WEIGHTS = {
|
67 |
+
"physical_threat": 1.5,
|
68 |
+
"suicidal_threat": 1.4,
|
69 |
+
"extreme_control": 1.5,
|
70 |
+
"gaslighting": 1.3,
|
71 |
+
"control": 1.2,
|
72 |
+
"dismissiveness": 0.8,
|
73 |
+
"non_abusive": 0.0 # shouldn't contribute to abuse score
|
74 |
+
}
|
75 |
+
|
76 |
def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
77 |
+
weighted_scores = []
|
78 |
+
for label, score in zip(LABELS, scores):
|
79 |
+
if score > thresholds[label]:
|
80 |
+
weight = PATTERN_WEIGHTS.get(label, 1.0)
|
81 |
+
weighted_scores.append(score * weight)
|
82 |
+
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
|
83 |
|
84 |
motif_hits = motif_hits or []
|
85 |
if any(label in motif_hits for label in {"physical_threat", "suicidal_threat", "extreme_control"}):
|