Spaces:
Running
on
Zero
Running
on
Zero
Upload app (23).py
Browse files- app (23).py +816 -0
app (23).py
ADDED
@@ -0,0 +1,816 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import io
|
8 |
+
from PIL import Image
|
9 |
+
from datetime import datetime
|
10 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
11 |
+
from motif_tagging import detect_motifs
|
12 |
+
from functools import lru_cache
|
13 |
+
from torch.nn.functional import sigmoid
|
14 |
+
|
15 |
+
# ----- Models -----
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
# Emotion model (CPU for stability)
|
20 |
+
emotion_pipeline = pipeline(
|
21 |
+
"text-classification",
|
22 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
23 |
+
top_k=6,
|
24 |
+
truncation=True,
|
25 |
+
device=-1 # Force CPU usage
|
26 |
+
)
|
27 |
+
|
28 |
+
# Abuse Model
|
29 |
+
model_name = "SamanthaStorm/tether-multilabel-v4" # Or your HF Hub path
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
32 |
+
model.to(device)
|
33 |
+
|
34 |
+
# DARVO Model
|
35 |
+
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
|
36 |
+
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
|
37 |
+
darvo_model.eval()
|
38 |
+
darvo_model.to(device)
|
39 |
+
|
40 |
+
def get_emotion_profile(text):
|
41 |
+
emotions = emotion_pipeline(text)
|
42 |
+
if isinstance(emotions, list) and isinstance(emotions[0], list):
|
43 |
+
emotions = emotions[0]
|
44 |
+
return {e['label'].lower(): round(e['score'], 3) for e in emotions}
|
45 |
+
# Emotion model (no retraining needed)
|
46 |
+
emotion_pipeline = pipeline(
|
47 |
+
"text-classification",
|
48 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
49 |
+
top_k=6,
|
50 |
+
truncation=True
|
51 |
+
)
|
52 |
+
|
53 |
+
# --- Timeline Visualization Function ---
|
54 |
+
def generate_abuse_score_chart(dates, scores, labels):
|
55 |
+
import matplotlib.pyplot as plt
|
56 |
+
import io
|
57 |
+
from PIL import Image
|
58 |
+
from datetime import datetime
|
59 |
+
import re
|
60 |
+
|
61 |
+
# Determine if all entries are valid dates
|
62 |
+
if all(re.match(r"\d{4}-\d{2}-\d{2}", d) for d in dates):
|
63 |
+
parsed_x = [datetime.strptime(d, "%Y-%m-%d") for d in dates]
|
64 |
+
x_labels = [d.strftime("%Y-%m-%d") for d in parsed_x]
|
65 |
+
else:
|
66 |
+
parsed_x = list(range(1, len(dates) + 1))
|
67 |
+
x_labels = [f"Message {i+1}" for i in range(len(dates))]
|
68 |
+
|
69 |
+
fig, ax = plt.subplots(figsize=(8, 3))
|
70 |
+
ax.plot(parsed_x, scores, marker='o', linestyle='-', color='darkred', linewidth=2)
|
71 |
+
|
72 |
+
for x, y in zip(parsed_x, scores):
|
73 |
+
ax.text(x, y + 2, f"{int(y)}%", ha='center', fontsize=8, color='black')
|
74 |
+
|
75 |
+
ax.set_xticks(parsed_x)
|
76 |
+
ax.set_xticklabels(x_labels)
|
77 |
+
ax.set_xlabel("") # No axis label
|
78 |
+
ax.set_ylabel("Abuse Score (%)")
|
79 |
+
ax.set_ylim(0, 105)
|
80 |
+
ax.grid(True)
|
81 |
+
plt.tight_layout()
|
82 |
+
|
83 |
+
buf = io.BytesIO()
|
84 |
+
plt.savefig(buf, format='png')
|
85 |
+
buf.seek(0)
|
86 |
+
return Image.open(buf)
|
87 |
+
|
88 |
+
|
89 |
+
# --- Abuse Model ---
|
90 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
91 |
+
|
92 |
+
model_name = "SamanthaStorm/tether-multilabel-v4"
|
93 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
95 |
+
|
96 |
+
LABELS = [
|
97 |
+
"recovery", "control", "gaslighting", "guilt tripping", "dismissiveness", "blame shifting",
|
98 |
+
"nonabusive","projection", "insults", "contradictory statements", "obscure language"
|
99 |
+
]
|
100 |
+
|
101 |
+
THRESHOLDS = {
|
102 |
+
"recovery": 0.27,
|
103 |
+
"control": 0.47,
|
104 |
+
"gaslighting": 0.48,
|
105 |
+
"guilt tripping": .56,
|
106 |
+
"dismissiveness": 0.25,
|
107 |
+
"blame shifting": 0.55,
|
108 |
+
"projection": 0.59,
|
109 |
+
"insults": 0.33,
|
110 |
+
"contradictory statements": 0.27,
|
111 |
+
"obscure language": 0.65,
|
112 |
+
"nonabusive": 1.0
|
113 |
+
}
|
114 |
+
|
115 |
+
PATTERN_WEIGHTS = {
|
116 |
+
"recovery": 0.5,
|
117 |
+
"control": 1.4,
|
118 |
+
"gaslighting": 1.0,
|
119 |
+
"guilt tripping": 0.9,
|
120 |
+
"dismissiveness": 0.9,
|
121 |
+
"blame shifting": 0.8,
|
122 |
+
"projection": 0.5,
|
123 |
+
"insults": 1.2,
|
124 |
+
"contradictory statements": 1.0,
|
125 |
+
"obscure language": 0.9,
|
126 |
+
"nonabusive": 0.0
|
127 |
+
}
|
128 |
+
|
129 |
+
ESCALATION_RISKS = {
|
130 |
+
"blame shifting": "low",
|
131 |
+
"contradictory statements": "moderate",
|
132 |
+
"control": "high",
|
133 |
+
"dismissiveness": "moderate",
|
134 |
+
"gaslighting": "moderate",
|
135 |
+
"guilt tripping": "moderate",
|
136 |
+
"insults": "moderate",
|
137 |
+
"obscure language": "low",
|
138 |
+
"projection": "low",
|
139 |
+
"recovery phase": "low"
|
140 |
+
}
|
141 |
+
RISK_STAGE_LABELS = {
|
142 |
+
1: "π Risk Stage: Tension-Building\nThis message reflects rising emotional pressure or subtle control attempts.",
|
143 |
+
2: "π₯ Risk Stage: Escalation\nThis message includes direct or aggressive patterns, suggesting active harm.",
|
144 |
+
3: "π§οΈ Risk Stage: Reconciliation\nThis message reflects a reset attemptβapologies or emotional repair without accountability.",
|
145 |
+
4: "πΈ Risk Stage: Calm / Honeymoon\nThis message appears supportive but may follow prior harm, minimizing it."
|
146 |
+
}
|
147 |
+
|
148 |
+
ESCALATION_QUESTIONS = [
|
149 |
+
("Partner has access to firearms or weapons", 4),
|
150 |
+
("Partner threatened to kill you", 3),
|
151 |
+
("Partner threatened you with a weapon", 3),
|
152 |
+
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
153 |
+
("Partner injured or threatened your pet(s)", 3),
|
154 |
+
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
155 |
+
("Partner forced or coerced you into unwanted sexual acts", 3),
|
156 |
+
("Partner threatened to take away your children", 2),
|
157 |
+
("Violence has increased in frequency or severity", 3),
|
158 |
+
("Partner monitors your calls/GPS/social media", 2)
|
159 |
+
]
|
160 |
+
def get_emotional_tone_tag(emotions, sentiment, patterns, abuse_score):
|
161 |
+
sadness = emotions.get("sadness", 0)
|
162 |
+
joy = emotions.get("joy", 0)
|
163 |
+
neutral = emotions.get("neutral", 0)
|
164 |
+
disgust = emotions.get("disgust", 0)
|
165 |
+
anger = emotions.get("anger", 0)
|
166 |
+
fear = emotions.get("fear", 0)
|
167 |
+
disgust = emotions.get("disgust", 0)
|
168 |
+
|
169 |
+
# 1. Performative Regret
|
170 |
+
if (
|
171 |
+
sadness > 0.4 and
|
172 |
+
any(p in patterns for p in ["blame shifting", "guilt tripping", "recovery phase"]) and
|
173 |
+
(sentiment == "undermining" or abuse_score > 40)
|
174 |
+
):
|
175 |
+
return "performative regret"
|
176 |
+
|
177 |
+
# 2. Coercive Warmth
|
178 |
+
if (
|
179 |
+
(joy > 0.3 or sadness > 0.4) and
|
180 |
+
any(p in patterns for p in ["control", "gaslighting"]) and
|
181 |
+
sentiment == "undermining"
|
182 |
+
):
|
183 |
+
return "coercive warmth"
|
184 |
+
|
185 |
+
# 3. Cold Invalidation
|
186 |
+
if (
|
187 |
+
(neutral + disgust) > 0.5 and
|
188 |
+
any(p in patterns for p in ["dismissiveness", "projection", "obscure language"]) and
|
189 |
+
sentiment == "undermining"
|
190 |
+
):
|
191 |
+
return "cold invalidation"
|
192 |
+
|
193 |
+
# 4. Genuine Vulnerability
|
194 |
+
if (
|
195 |
+
(sadness + fear) > 0.5 and
|
196 |
+
sentiment == "supportive" and
|
197 |
+
all(p in ["recovery phase"] for p in patterns)
|
198 |
+
):
|
199 |
+
return "genuine vulnerability"
|
200 |
+
|
201 |
+
# 5. Emotional Threat
|
202 |
+
if (
|
203 |
+
(anger + disgust) > 0.5 and
|
204 |
+
any(p in patterns for p in ["control", "insults", "dismissiveness"]) and
|
205 |
+
sentiment == "undermining"
|
206 |
+
):
|
207 |
+
return "emotional threat"
|
208 |
+
|
209 |
+
# 6. Weaponized Sadness
|
210 |
+
if (
|
211 |
+
sadness > 0.6 and
|
212 |
+
any(p in patterns for p in ["guilt tripping", "projection"]) and
|
213 |
+
sentiment == "undermining"
|
214 |
+
):
|
215 |
+
return "weaponized sadness"
|
216 |
+
|
217 |
+
# 7. Toxic Resignation
|
218 |
+
if (
|
219 |
+
neutral > 0.5 and
|
220 |
+
any(p in patterns for p in ["dismissiveness", "obscure language"]) and
|
221 |
+
sentiment == "undermining"
|
222 |
+
):
|
223 |
+
return "toxic resignation"
|
224 |
+
# 8. Aggressive Dismissal
|
225 |
+
if (
|
226 |
+
anger > 0.5 and
|
227 |
+
any(p in patterns for p in ["aggression", "insults", "control"]) and
|
228 |
+
sentiment == "undermining"
|
229 |
+
):
|
230 |
+
return "aggressive dismissal"
|
231 |
+
# 9. Deflective Hostility
|
232 |
+
if (
|
233 |
+
(0.2 < anger < 0.7 or 0.2 < disgust < 0.7) and
|
234 |
+
any(p in patterns for p in ["deflection", "projection"]) and
|
235 |
+
sentiment == "undermining"
|
236 |
+
):
|
237 |
+
return "deflective hostility"
|
238 |
+
# 10. Mocking Detachment
|
239 |
+
if (
|
240 |
+
(neutral + joy) > 0.5 and
|
241 |
+
any(p in patterns for p in ["mockery", "insults", "projection"]) and
|
242 |
+
sentiment == "undermining"
|
243 |
+
):
|
244 |
+
return "mocking detachment"
|
245 |
+
# 11. Contradictory Gaslight
|
246 |
+
if (
|
247 |
+
(joy + anger + sadness) > 0.5 and
|
248 |
+
any(p in patterns for p in ["gaslighting", "contradictory statements"]) and
|
249 |
+
sentiment == "undermining"
|
250 |
+
):
|
251 |
+
return "contradictory gaslight"
|
252 |
+
# 12. Calculated Neutrality
|
253 |
+
if (
|
254 |
+
neutral > 0.6 and
|
255 |
+
any(p in patterns for p in ["obscure language", "deflection", "dismissiveness"]) and
|
256 |
+
sentiment == "undermining"
|
257 |
+
):
|
258 |
+
return "calculated neutrality"
|
259 |
+
# 13. Forced Accountability Flip
|
260 |
+
if (
|
261 |
+
(anger + disgust) > 0.5 and
|
262 |
+
any(p in patterns for p in ["blame shifting", "manipulation", "projection"]) and
|
263 |
+
sentiment == "undermining"
|
264 |
+
):
|
265 |
+
return "forced accountability flip"
|
266 |
+
# 14. Conditional Affection
|
267 |
+
if (
|
268 |
+
joy > 0.4 and
|
269 |
+
any(p in patterns for p in ["apology baiting", "control", "recovery phase"]) and
|
270 |
+
sentiment == "undermining"
|
271 |
+
):
|
272 |
+
return "conditional affection"
|
273 |
+
|
274 |
+
if (
|
275 |
+
(anger + disgust) > 0.5 and
|
276 |
+
any(p in patterns for p in ["blame shifting", "projection", "deflection"]) and
|
277 |
+
sentiment == "undermining"
|
278 |
+
):
|
279 |
+
return "forced accountability flip"
|
280 |
+
|
281 |
+
# Emotional Instability Fallback
|
282 |
+
if (
|
283 |
+
(anger + sadness + disgust) > 0.6 and
|
284 |
+
sentiment == "undermining"
|
285 |
+
):
|
286 |
+
return "emotional instability"
|
287 |
+
|
288 |
+
return None
|
289 |
+
# π New DARVO score model (regression-based)
|
290 |
+
from torch.nn.functional import sigmoid
|
291 |
+
import torch
|
292 |
+
|
293 |
+
# Load your trained DARVO regressor from Hugging Face Hub
|
294 |
+
darvo_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1")
|
295 |
+
darvo_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-darvo-regressor-v1", use_fast=False)
|
296 |
+
darvo_model.eval()
|
297 |
+
|
298 |
+
def predict_darvo_score(text):
|
299 |
+
inputs = darvo_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
300 |
+
with torch.no_grad():
|
301 |
+
logits = darvo_model(**inputs).logits
|
302 |
+
score = sigmoid(logits).item()
|
303 |
+
return round(score, 4) # Rounded for display/output
|
304 |
+
def detect_weapon_language(text):
|
305 |
+
weapon_keywords = [
|
306 |
+
"knife", "knives", "stab", "cut you", "cutting",
|
307 |
+
"gun", "shoot", "rifle", "firearm", "pistol",
|
308 |
+
"bomb", "blow up", "grenade", "explode",
|
309 |
+
"weapon", "armed", "loaded", "kill you", "take you out"
|
310 |
+
]
|
311 |
+
text_lower = text.lower()
|
312 |
+
return any(word in text_lower for word in weapon_keywords)
|
313 |
+
def get_risk_stage(patterns, sentiment):
|
314 |
+
if "insults" in patterns:
|
315 |
+
return 2
|
316 |
+
elif "recovery phase" in patterns:
|
317 |
+
return 3
|
318 |
+
elif "control" in patterns or "guilt tripping" in patterns:
|
319 |
+
return 1
|
320 |
+
elif sentiment == "supportive" and any(p in patterns for p in ["projection", "dismissiveness"]):
|
321 |
+
return 4
|
322 |
+
return 1
|
323 |
+
|
324 |
+
def generate_risk_snippet(abuse_score, top_label, escalation_score, stage):
|
325 |
+
import re
|
326 |
+
|
327 |
+
# Extract aggression score if aggression is detected
|
328 |
+
if isinstance(top_label, str) and "aggression" in top_label.lower():
|
329 |
+
try:
|
330 |
+
match = re.search(r"\(?(\d+)\%?\)?", top_label)
|
331 |
+
aggression_score = int(match.group(1)) / 100 if match else 0
|
332 |
+
except:
|
333 |
+
aggression_score = 0
|
334 |
+
else:
|
335 |
+
aggression_score = 0
|
336 |
+
|
337 |
+
# Revised risk logic
|
338 |
+
if abuse_score >= 85 or escalation_score >= 16:
|
339 |
+
risk_level = "high"
|
340 |
+
elif abuse_score >= 60 or escalation_score >= 8 or aggression_score >= 0.25:
|
341 |
+
risk_level = "moderate"
|
342 |
+
elif stage == 2 and abuse_score >= 40:
|
343 |
+
risk_level = "moderate"
|
344 |
+
else:
|
345 |
+
risk_level = "low"
|
346 |
+
|
347 |
+
if isinstance(top_label, str) and " β " in top_label:
|
348 |
+
pattern_label, pattern_score = top_label.split(" β ")
|
349 |
+
else:
|
350 |
+
pattern_label = str(top_label) if top_label is not None else "Unknown"
|
351 |
+
pattern_score = ""
|
352 |
+
|
353 |
+
WHY_FLAGGED = {
|
354 |
+
"control": "This message may reflect efforts to restrict someoneβs autonomy, even if it's framed as concern or care.",
|
355 |
+
"gaslighting": "This message could be manipulating someone into questioning their perception or feelings.",
|
356 |
+
"dismissiveness": "This message may include belittling, invalidating, or ignoring the other personβs experience.",
|
357 |
+
"insults": "Direct insults often appear in escalating abusive dynamics and can erode emotional safety.",
|
358 |
+
"blame shifting": "This message may redirect responsibility to avoid accountability, especially during conflict.",
|
359 |
+
"guilt tripping": "This message may induce guilt in order to control or manipulate behavior.",
|
360 |
+
"recovery phase": "This message may be part of a tension-reset cycle, appearing kind but avoiding change.",
|
361 |
+
"projection": "This message may involve attributing the abuserβs own behaviors to the victim.",
|
362 |
+
"contradictory statements": "This message may contain internal contradictions used to confuse, destabilize, or deflect responsibility.",
|
363 |
+
"obscure language": "This message may use overly formal, vague, or complex language to obscure meaning or avoid accountability.",
|
364 |
+
"default": "This message contains language patterns that may affect safety, clarity, or emotional autonomy."
|
365 |
+
}
|
366 |
+
|
367 |
+
explanation = WHY_FLAGGED.get(pattern_label.lower(), WHY_FLAGGED["default"])
|
368 |
+
|
369 |
+
base = f"\n\nπ Risk Level: {risk_level.capitalize()}\n"
|
370 |
+
base += f"This message shows strong indicators of **{pattern_label}**. "
|
371 |
+
|
372 |
+
if risk_level == "high":
|
373 |
+
base += "The language may reflect patterns of emotional control, even when expressed in soft or caring terms.\n"
|
374 |
+
elif risk_level == "moderate":
|
375 |
+
base += "There are signs of emotional pressure or verbal aggression that may escalate if repeated.\n"
|
376 |
+
else:
|
377 |
+
base += "The message does not strongly indicate abuse, but it's important to monitor for patterns.\n"
|
378 |
+
|
379 |
+
base += f"\nπ‘ *Why this might be flagged:*\n{explanation}\n"
|
380 |
+
base += f"\nDetected Pattern: **{pattern_label} ({pattern_score})**\n"
|
381 |
+
base += "π§ You can review the pattern in context. This tool highlights possible dynamicsβnot judgments."
|
382 |
+
return base
|
383 |
+
|
384 |
+
|
385 |
+
# --- Step X: Detect Immediate Danger Threats ---
|
386 |
+
THREAT_MOTIFS = [
|
387 |
+
"i'll kill you", "iβm going to hurt you", "youβre dead", "you won't survive this",
|
388 |
+
"iβll break your face", "i'll bash your head in", "iβll snap your neck",
|
389 |
+
"iβll come over there and make you shut up", "i'll knock your teeth out",
|
390 |
+
"youβre going to bleed", "you want me to hit you?", "i wonβt hold back next time",
|
391 |
+
"i swear to god iβll beat you", "next time, i wonβt miss", "iβll make you scream",
|
392 |
+
"i know where you live", "i'm outside", "iβll be waiting", "i saw you with him",
|
393 |
+
"you canβt hide from me", "iβm coming to get you", "i'll find you", "i know your schedule",
|
394 |
+
"i watched you leave", "i followed you home", "you'll regret this", "youβll be sorry",
|
395 |
+
"youβre going to wish you hadnβt", "you brought this on yourself", "donβt push me",
|
396 |
+
"you have no idea what iβm capable of", "you better watch yourself",
|
397 |
+
"i donβt care what happens to you anymore", "iβll make you suffer", "youβll pay for this",
|
398 |
+
"iβll never let you go", "youβre nothing without me", "if you leave me, iβll kill myself",
|
399 |
+
"i'll ruin you", "i'll tell everyone what you did", "iβll make sure everyone knows",
|
400 |
+
"iβm going to destroy your name", "youβll lose everyone", "iβll expose you",
|
401 |
+
"your friends will hate you", "iβll post everything", "youβll be cancelled",
|
402 |
+
"youβll lose everything", "iβll take the house", "iβll drain your account",
|
403 |
+
"youβll never see a dime", "youβll be broke when iβm done", "iβll make sure you lose your job",
|
404 |
+
"iβll take your kids", "iβll make sure you have nothing", "you canβt afford to leave me",
|
405 |
+
"don't make me do this", "you know what happens when iβm mad", "youβre forcing my hand",
|
406 |
+
"if you just behaved, this wouldnβt happen", "this is your fault",
|
407 |
+
"youβre making me hurt you", "i warned you", "you should have listened"
|
408 |
+
]
|
409 |
+
|
410 |
+
|
411 |
+
@spaces.GPU
|
412 |
+
def compute_abuse_score(matched_scores, sentiment):
|
413 |
+
"""
|
414 |
+
Compute abuse score with more conservative adjustments.
|
415 |
+
"""
|
416 |
+
if not matched_scores:
|
417 |
+
return 0.0
|
418 |
+
|
419 |
+
sorted_scores = sorted(matched_scores, key=lambda x: x[1], reverse=True)
|
420 |
+
highest_score = sorted_scores[0][1]
|
421 |
+
num_patterns = len(matched_scores)
|
422 |
+
|
423 |
+
# Scale down base score more aggressively if multiple patterns are present
|
424 |
+
if num_patterns > 1:
|
425 |
+
highest_score *= (1 - (num_patterns - 1) * 0.2) # Reduce by 20% for each additional pattern
|
426 |
+
|
427 |
+
base_score = highest_score * 100
|
428 |
+
|
429 |
+
critical_patterns = {
|
430 |
+
'gaslighting': 1.4, # Reduced
|
431 |
+
'guilt tripping': 1.3, # Reduced
|
432 |
+
'blame shifting': 1.2, # Reduced
|
433 |
+
'control': 1.3, # Reduced
|
434 |
+
'insults': 1.1, # Reduced
|
435 |
+
'manipulation': 1.2,
|
436 |
+
'love bombing': 1.2,
|
437 |
+
'emotional blackmail': 1.4,
|
438 |
+
'dismissiveness': 1.1,
|
439 |
+
'contradictory statements': 1.1
|
440 |
+
}
|
441 |
+
|
442 |
+
for label, score, _ in matched_scores:
|
443 |
+
if label in critical_patterns and score > 0.5:
|
444 |
+
base_score *= critical_patterns[label]
|
445 |
+
|
446 |
+
# Further reduce combination multipliers
|
447 |
+
if len(matched_scores) >= 2:
|
448 |
+
base_score *= 1.1 # Reduced
|
449 |
+
if len(matched_scores) >= 3:
|
450 |
+
base_score *= 1.05 # Reduced
|
451 |
+
|
452 |
+
# Reduce high confidence boost
|
453 |
+
if any(score > 0.8 for _, score, _ in matched_scores):
|
454 |
+
base_score *= 1.05 # Reduced
|
455 |
+
|
456 |
+
# Sentiment modifier (more nuanced)
|
457 |
+
if emotion_profile.get("neutral", 0) > 0.85 and any(
|
458 |
+
scores[LABELS.index(l)] > thresholds[l] * 0.8 # Scale down thresholds for neutral sentiment
|
459 |
+
for l in ["control", "blame shifting", "insults", "guilt tripping"] # Consider more labels
|
460 |
+
):
|
461 |
+
sentiment = "undermining" # Only override if multiple patterns are present with moderate confidence
|
462 |
+
elif sentiment_score > 0.35: # Increased threshold
|
463 |
+
sentiment = "undermining"
|
464 |
+
else:
|
465 |
+
sentiment = "supportive"
|
466 |
+
|
467 |
+
# Reduce minimum score and threshold for activation
|
468 |
+
if any(score > 0.9 for _, score, _ in matched_scores): # Higher threshold
|
469 |
+
base_score = max(base_score, 75.0) # Reduced
|
470 |
+
elif any(score > 0.7 for _, score, _ in matched_scores): # Moderate threshold
|
471 |
+
base_score = max(base_score, 60.0) # Reduced
|
472 |
+
|
473 |
+
return min(round(base_score, 1), 100.0)
|
474 |
+
|
475 |
+
@lru_cache(maxsize=1024) # Cache results for performance
|
476 |
+
def analyze_single_message(text, thresholds):
|
477 |
+
print("β‘ ENTERED analyze_single_message")
|
478 |
+
stage = 1
|
479 |
+
motif_hits, matched_phrases = detect_motifs(text)
|
480 |
+
|
481 |
+
# Get emotion profile
|
482 |
+
emotion_profile = get_emotion_profile(text)
|
483 |
+
sentiment_score = emotion_profile.get("anger", 0) + emotion_profile.get("disgust", 0)
|
484 |
+
|
485 |
+
# Get model scores
|
486 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
487 |
+
with torch.no_grad():
|
488 |
+
outputs = model(**inputs)
|
489 |
+
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
490 |
+
|
491 |
+
# Sentiment override
|
492 |
+
if emotion_profile.get("neutral", 0) > 0.85 and any(
|
493 |
+
scores[LABELS.index(l)] > thresholds[l] * 0.8 # Scale down thresholds for neutral sentiment
|
494 |
+
for l in ["control", "blame shifting", "insults", "guilt tripping"] # Consider more labels
|
495 |
+
):
|
496 |
+
sentiment = "undermining" # Only override if multiple patterns are present with moderate confidence
|
497 |
+
elif sentiment_score > 0.35: # Increased threshold
|
498 |
+
sentiment = "undermining"
|
499 |
+
else:
|
500 |
+
sentiment = "supportive"
|
501 |
+
|
502 |
+
weapon_flag = detect_weapon_language(text)
|
503 |
+
|
504 |
+
adjusted_thresholds = {
|
505 |
+
k: v + 0.05 if sentiment == "supportive" else v
|
506 |
+
for k, v in thresholds.items()
|
507 |
+
}
|
508 |
+
|
509 |
+
darvo_score = predict_darvo_score(text)
|
510 |
+
|
511 |
+
threshold_labels = [
|
512 |
+
label for label, score in zip(LABELS, scores)
|
513 |
+
if score > adjusted_thresholds[label]
|
514 |
+
]
|
515 |
+
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
516 |
+
|
517 |
+
if not threshold_labels:
|
518 |
+
return 0.0, [], [], {"label": sentiment}, 1, 0.0, None
|
519 |
+
|
520 |
+
top_patterns = sorted(
|
521 |
+
[(label, score) for label, score in zip(LABELS, scores)],
|
522 |
+
key=lambda x: x[1],
|
523 |
+
reverse=True
|
524 |
+
)[:2]
|
525 |
+
|
526 |
+
# Abuse score
|
527 |
+
abuse_score = compute_abuse_score(matched_scores, sentiment) # Calculate before adjustments
|
528 |
+
|
529 |
+
if weapon_flag:
|
530 |
+
abuse_score = min(abuse_score + 25, 100) # Apply weapon adjustment directly to abuse_score
|
531 |
+
if stage < 2:
|
532 |
+
stage = 2
|
533 |
+
|
534 |
+
abuse_score = min(abuse_score, 100 if "control" in threshold_labels else 95) # Apply cap after weapon adjustment
|
535 |
+
|
536 |
+
tone_tag = get_emotional_tone_tag(emotion_profile, sentiment, threshold_labels, abuse_score)
|
537 |
+
|
538 |
+
|
539 |
+
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
540 |
+
matched_scores = [(label, score, PATTERN_WEIGHTS.get(label, 1.0)) for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
541 |
+
|
542 |
+
if not threshold_labels:
|
543 |
+
return 0.0, [], [], {"label": sentiment}, 1, 0.0, None
|
544 |
+
|
545 |
+
# Remove recovery tag if tone is fake
|
546 |
+
if "recovery" in threshold_labels and tone_tag == "forced accountability flip":
|
547 |
+
threshold_labels.remove("recovery")
|
548 |
+
top_patterns = [p for p in top_patterns if p[0] != "recovery"]
|
549 |
+
print("β οΈ Removing 'recovery' due to undermining sentiment (not genuine repair)")
|
550 |
+
|
551 |
+
# Override profanity/anger for short texts
|
552 |
+
profane_words = {"fuck", "fucking", "bitch", "shit", "cunt", "ho", "asshole", "dick", "whore", "slut"}
|
553 |
+
tokens = set(text.lower().split())
|
554 |
+
has_profane = any(word in tokens for word in profane_words)
|
555 |
+
short_text = len(tokens) <= 10
|
556 |
+
anger_score = emotion_profile.get("anger", 0)
|
557 |
+
if has_profane and anger_score > 0.75 and short_text:
|
558 |
+
print("β οΈ Profanity + Anger Override Triggered")
|
559 |
+
insult_score = next((s for l, s in top_patterns if l == "insults"), 0)
|
560 |
+
if ("insults", insult_score) not in top_patterns:
|
561 |
+
top_patterns = [("insults", insult_score)] + top_patterns
|
562 |
+
if "insults" not in threshold_labels:
|
563 |
+
threshold_labels.append("insults")
|
564 |
+
|
565 |
+
# Debug
|
566 |
+
print(f"Emotional Tone Tag: {tone_tag}")
|
567 |
+
print("Emotion Profile:")
|
568 |
+
for emotion, score in emotion_profile.items():
|
569 |
+
print(f" {emotion.capitalize():10}: {score}")
|
570 |
+
print("\n--- Debug Info ---")
|
571 |
+
print(f"Text: {text}")
|
572 |
+
print(f"Sentiment (via emotion): {sentiment} (score: {round(sentiment_score, 3)})")
|
573 |
+
print("Abuse Pattern Scores:")
|
574 |
+
for label, score in zip(LABELS, scores):
|
575 |
+
passed = "β
" if score > adjusted_thresholds[label] else "β"
|
576 |
+
print(f" {label:25} β {score:.3f} {passed}")
|
577 |
+
print(f"Matched for score: {[(l, round(s, 3)) for l, s, _ in matched_scores]}")
|
578 |
+
print(f"Abuse Score Raw: {round(abuse_score_raw, 1)}")
|
579 |
+
print("------------------\n")
|
580 |
+
|
581 |
+
return abuse_score, threshold_labels, top_patterns, {"label": sentiment}, stage, darvo_score, tone_tag
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
+
@spaces.GPU
|
586 |
+
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
587 |
+
from collections import Counter
|
588 |
+
|
589 |
+
none_selected_checked = answers_and_none[-1]
|
590 |
+
responses_checked = any(answers_and_none[:-1])
|
591 |
+
none_selected = not responses_checked and none_selected_checked
|
592 |
+
|
593 |
+
if none_selected:
|
594 |
+
escalation_score = 0
|
595 |
+
escalation_note = "Checklist completed: no danger items reported."
|
596 |
+
escalation_completed = True
|
597 |
+
elif responses_checked:
|
598 |
+
escalation_score = sum(w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a)
|
599 |
+
escalation_note = "Checklist completed."
|
600 |
+
escalation_completed = True
|
601 |
+
else:
|
602 |
+
escalation_score = None
|
603 |
+
escalation_note = "Checklist not completed."
|
604 |
+
escalation_completed = False
|
605 |
+
|
606 |
+
messages = [msg1, msg2, msg3]
|
607 |
+
active = [(m, f"Message {i+1}") for i, m in enumerate(messages) if m.strip()]
|
608 |
+
if not active:
|
609 |
+
return "Please enter at least one message.", None
|
610 |
+
|
611 |
+
# Flag any threat phrases present in the messages
|
612 |
+
import re
|
613 |
+
|
614 |
+
def normalize(text):
|
615 |
+
import unicodedata
|
616 |
+
text = text.lower().strip()
|
617 |
+
text = unicodedata.normalize("NFKD", text) # handles curly quotes
|
618 |
+
text = text.replace("β", "'") # smart to straight
|
619 |
+
return re.sub(r"[^a-z0-9 ]", "", text)
|
620 |
+
|
621 |
+
def detect_threat_motifs(message, motif_list):
|
622 |
+
norm_msg = normalize(message)
|
623 |
+
return [
|
624 |
+
motif for motif in motif_list
|
625 |
+
if normalize(motif) in norm_msg
|
626 |
+
]
|
627 |
+
|
628 |
+
# Collect matches per message
|
629 |
+
immediate_threats = [detect_threat_motifs(m, THREAT_MOTIFS) for m, _ in active]
|
630 |
+
flat_threats = [t for sublist in immediate_threats for t in sublist]
|
631 |
+
threat_risk = "Yes" if flat_threats else "No"
|
632 |
+
results = [(analyze_single_message(m.lower(), THRESHOLDS.copy()), d) for m, d in active]
|
633 |
+
|
634 |
+
abuse_scores = [r[0][0] for r in results]
|
635 |
+
stages = [r[0][4] for r in results]
|
636 |
+
darvo_scores = [r[0][5] for r in results]
|
637 |
+
tone_tags = [r[0][6] for r in results]
|
638 |
+
dates_used = [r[1] for r in results]
|
639 |
+
|
640 |
+
predicted_labels = [label for r in results for label, _ in r[0][2]]
|
641 |
+
high = {'control'}
|
642 |
+
moderate = {'gaslighting', 'dismissiveness', 'obscure language', 'insults', 'contradictory statements', 'guilt tripping'}
|
643 |
+
low = {'blame shifting', 'projection', 'recovery phase'}
|
644 |
+
counts = {'high': 0, 'moderate': 0, 'low': 0}
|
645 |
+
for label in predicted_labels:
|
646 |
+
if label in high:
|
647 |
+
counts['high'] += 1
|
648 |
+
elif label in moderate:
|
649 |
+
counts['moderate'] += 1
|
650 |
+
elif label in low:
|
651 |
+
counts['low'] += 1
|
652 |
+
|
653 |
+
# Pattern escalation logic
|
654 |
+
pattern_escalation_risk = "Low"
|
655 |
+
if counts['high'] >= 2 and counts['moderate'] >= 2:
|
656 |
+
pattern_escalation_risk = "Critical"
|
657 |
+
elif (counts['high'] >= 2 and counts['moderate'] >= 1) or (counts['moderate'] >= 3) or (counts['high'] >= 1 and counts['moderate'] >= 2):
|
658 |
+
pattern_escalation_risk = "High"
|
659 |
+
elif (counts['moderate'] == 2) or (counts['high'] == 1 and counts['moderate'] == 1) or (counts['moderate'] == 1 and counts['low'] >= 2) or (counts['high'] == 1 and sum(counts.values()) == 1):
|
660 |
+
pattern_escalation_risk = "Moderate"
|
661 |
+
|
662 |
+
checklist_escalation_risk = "Unknown" if escalation_score is None else (
|
663 |
+
"Critical" if escalation_score >= 20 else
|
664 |
+
"Moderate" if escalation_score >= 10 else
|
665 |
+
"Low"
|
666 |
+
)
|
667 |
+
|
668 |
+
escalation_bump = 0
|
669 |
+
for result, _ in results:
|
670 |
+
abuse_score, _, _, sentiment, stage, darvo_score, tone_tag = result
|
671 |
+
if darvo_score > 0.65:
|
672 |
+
escalation_bump += 3
|
673 |
+
if tone_tag in ["forced accountability flip", "emotional threat"]:
|
674 |
+
escalation_bump += 2
|
675 |
+
if abuse_score > 80:
|
676 |
+
escalation_bump += 2
|
677 |
+
if stage == 2:
|
678 |
+
escalation_bump += 3
|
679 |
+
|
680 |
+
def rank(label):
|
681 |
+
return {"Low": 0, "Moderate": 1, "High": 2, "Critical": 3, "Unknown": 0}.get(label, 0)
|
682 |
+
|
683 |
+
combined_score = rank(pattern_escalation_risk) + rank(checklist_escalation_risk) + escalation_bump
|
684 |
+
escalation_risk = (
|
685 |
+
"Critical" if combined_score >= 6 else
|
686 |
+
"High" if combined_score >= 4 else
|
687 |
+
"Moderate" if combined_score >= 2 else
|
688 |
+
"Low"
|
689 |
+
)
|
690 |
+
|
691 |
+
none_selected_checked = answers_and_none[-1]
|
692 |
+
responses_checked = any(answers_and_none[:-1])
|
693 |
+
none_selected = not responses_checked and none_selected_checked
|
694 |
+
|
695 |
+
# Determine escalation_score
|
696 |
+
if none_selected:
|
697 |
+
escalation_score = 0
|
698 |
+
escalation_completed = True
|
699 |
+
elif responses_checked:
|
700 |
+
escalation_score = sum(
|
701 |
+
w for (_, w), a in zip(ESCALATION_QUESTIONS, answers_and_none[:-1]) if a
|
702 |
+
)
|
703 |
+
escalation_completed = True
|
704 |
+
else:
|
705 |
+
escalation_score = None
|
706 |
+
escalation_completed = False
|
707 |
+
|
708 |
+
# Build escalation_text and hybrid_score
|
709 |
+
if escalation_score is None:
|
710 |
+
escalation_text = (
|
711 |
+
"π« **Escalation Potential: Unknown** (Checklist not completed)\n"
|
712 |
+
"β οΈ This section was not completed. Escalation potential is estimated using message data only.\n"
|
713 |
+
)
|
714 |
+
hybrid_score = 0
|
715 |
+
elif escalation_score == 0:
|
716 |
+
escalation_text = (
|
717 |
+
"β
**Escalation Checklist Completed:** No danger items reported.\n"
|
718 |
+
"π§ **Escalation potential estimated from detected message patterns only.**\n"
|
719 |
+
f"β’ Pattern Risk: {pattern_escalation_risk}\n"
|
720 |
+
f"β’ Checklist Risk: None reported\n"
|
721 |
+
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
|
722 |
+
)
|
723 |
+
hybrid_score = escalation_bump
|
724 |
+
else:
|
725 |
+
hybrid_score = escalation_score + escalation_bump
|
726 |
+
escalation_text = (
|
727 |
+
f"π **Escalation Potential: {escalation_risk} ({hybrid_score}/29)**\n"
|
728 |
+
"π This score combines your safety checklist answers *and* detected high-risk behavior.\n"
|
729 |
+
f"β’ Pattern Risk: {pattern_escalation_risk}\n"
|
730 |
+
f"β’ Checklist Risk: {checklist_escalation_risk}\n"
|
731 |
+
f"β’ Escalation Bump: +{escalation_bump} (from DARVO, tone, intensity, etc.)"
|
732 |
+
)
|
733 |
+
|
734 |
+
# Composite Abuse Score (weighted average based on message length)
|
735 |
+
composite_abuse_scores = []
|
736 |
+
message_lengths = [len(m.split()) for m, _ in active]
|
737 |
+
total_length = sum(message_lengths)
|
738 |
+
|
739 |
+
for result, length in zip(results, message_lengths):
|
740 |
+
abuse_score = result[0][0]
|
741 |
+
weight = length / total_length if total_length > 0 else 1 / len(results) if len(results) > 0 else 1
|
742 |
+
composite_abuse_scores.append(abuse_score * weight)
|
743 |
+
composite_abuse = int(round(sum(composite_abuse_scores)))
|
744 |
+
|
745 |
+
|
746 |
+
most_common_stage = max(set(stages), key=stages.count)
|
747 |
+
stage_text = RISK_STAGE_LABELS[most_common_stage]
|
748 |
+
# Derive top label list for each message
|
749 |
+
# safe derive top_labels
|
750 |
+
top_labels = []
|
751 |
+
for result, _ in results:
|
752 |
+
threshold_labels = result[1]
|
753 |
+
top_patterns = result[2]
|
754 |
+
if threshold_labels:
|
755 |
+
top_labels.append(threshold_labels[0])
|
756 |
+
elif top_patterns:
|
757 |
+
top_labels.append(top_patterns[0][0])
|
758 |
+
else:
|
759 |
+
top_labels.append("none") # or whatever default you prefer
|
760 |
+
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
761 |
+
darvo_blurb = ""
|
762 |
+
if avg_darvo > 0.25:
|
763 |
+
level = "moderate" if avg_darvo < 0.65 else "high"
|
764 |
+
darvo_blurb = f"\n\nπ **DARVO Score: {avg_darvo}** β This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
765 |
+
|
766 |
+
out = f"Abuse Intensity: {composite_abuse}%\n"
|
767 |
+
out += "π This reflects the strength and severity of detected abuse patterns in the message(s).\n\n"
|
768 |
+
out += generate_risk_snippet(composite_abuse, top_labels[0], hybrid_score, most_common_stage)
|
769 |
+
out += f"\n\n{stage_text}"
|
770 |
+
out += darvo_blurb
|
771 |
+
out += "\n\nπ **Emotional Tones Detected:**\n"
|
772 |
+
for i, tone in enumerate(tone_tags):
|
773 |
+
out += f"β’ Message {i+1}: *{tone or 'none'}*\n"
|
774 |
+
# --- Add Immediate Danger Threats section
|
775 |
+
if flat_threats:
|
776 |
+
out += "\n\nπ¨ **Immediate Danger Threats Detected:**\n"
|
777 |
+
for t in set(flat_threats):
|
778 |
+
out += f"β’ \"{t}\"\n"
|
779 |
+
out += "\nβ οΈ These phrases may indicate an imminent risk to physical safety."
|
780 |
+
else:
|
781 |
+
out += "\n\nπ§© **Immediate Danger Threats:** None explicitly detected.\n"
|
782 |
+
out += "This does *not* rule out risk, but no direct threat phrases were matched."
|
783 |
+
pattern_labels = [
|
784 |
+
pats[0][0] if (pats := r[0][2]) else "none"
|
785 |
+
for r in results
|
786 |
+
]
|
787 |
+
timeline_image = generate_abuse_score_chart(dates_used, abuse_scores, top_labels)
|
788 |
+
out += "\n\n" + escalation_text
|
789 |
+
return out, timeline_image
|
790 |
+
|
791 |
+
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
792 |
+
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
793 |
+
none_box = gr.Checkbox(label="None of the above")
|
794 |
+
|
795 |
+
|
796 |
+
# βββ FINAL βFORCE LAUNCHβ (no guards) ββββββββββββββββββββββββ
|
797 |
+
|
798 |
+
demo = gr.Interface(
|
799 |
+
fn=analyze_composite,
|
800 |
+
inputs=textbox_inputs + quiz_boxes + [none_box],
|
801 |
+
outputs=[
|
802 |
+
gr.Textbox(label="Results"),
|
803 |
+
gr.Image(label="Abuse Score Timeline", type="pil")
|
804 |
+
],
|
805 |
+
title="Abuse Pattern Detector + Escalation Quiz",
|
806 |
+
description=(
|
807 |
+
"Enter up to three messages that concern you. "
|
808 |
+
"For the most accurate results, include messages from a recent emotionally intense period."
|
809 |
+
),
|
810 |
+
flagging_mode="manual"
|
811 |
+
)
|
812 |
+
# This single call will start the server and block,
|
813 |
+
# keeping the container alive on Spaces.
|
814 |
+
demo.launch()
|
815 |
+
|
816 |
+
|