Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
5 |
from motif_tagging import detect_motifs
|
|
|
6 |
|
7 |
-
#
|
8 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
9 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
|
|
|
|
|
10 |
model_name = "SamanthaStorm/autotrain-c1un8-p8vzo"
|
11 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
12 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
|
14 |
-
LABELS = [
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
PATTERN_LABELS = LABELS[:15]
|
17 |
DANGER_LABELS = LABELS[15:18]
|
18 |
-
EXPLANATIONS = {...}
|
19 |
-
PATTERN_WEIGHTS = {...}
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def custom_sentiment(text):
|
23 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
@@ -30,7 +72,6 @@ def custom_sentiment(text):
|
|
30 |
score = probs[0][label_idx].item()
|
31 |
return {"label": label, "score": score}
|
32 |
|
33 |
-
|
34 |
def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
35 |
weighted_scores = []
|
36 |
for label, score in zip(LABELS, scores):
|
@@ -39,11 +80,10 @@ def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
|
39 |
weighted_scores.append(score * weight)
|
40 |
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
|
41 |
motif_hits = motif_hits or []
|
42 |
-
if any(label in motif_hits for label in
|
43 |
base_score = max(base_score, 75.0)
|
44 |
return base_score
|
45 |
|
46 |
-
|
47 |
def interpret_abuse_level(score):
|
48 |
if score > 80:
|
49 |
return "Extreme / High Risk"
|
@@ -55,50 +95,59 @@ def interpret_abuse_level(score):
|
|
55 |
return "Mild Concern"
|
56 |
return "Very Low / Likely Safe"
|
57 |
|
58 |
-
|
59 |
-
def analyze_single_message(text):
|
60 |
-
if not text.strip():
|
61 |
-
return "No input provided."
|
62 |
-
sentiment = custom_sentiment(text)
|
63 |
-
thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment['label'] == "undermining" else THRESHOLDS.copy()
|
64 |
motif_flags, matched_phrases = detect_motifs(text)
|
|
|
|
|
|
|
|
|
|
|
65 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
66 |
with torch.no_grad():
|
67 |
outputs = model(**inputs)
|
68 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
iface = gr.Interface(
|
86 |
fn=analyze_composite,
|
87 |
inputs=[
|
88 |
gr.Textbox(label="Message 1"),
|
89 |
gr.Textbox(label="Message 2"),
|
90 |
-
gr.Textbox(label="Message 3")
|
|
|
|
|
|
|
|
|
91 |
],
|
92 |
outputs=[
|
93 |
gr.Textbox(label="Message 1 Result"),
|
94 |
gr.Textbox(label="Message 2 Result"),
|
95 |
gr.Textbox(label="Message 3 Result"),
|
96 |
-
gr.Textbox(label="Composite Score
|
97 |
],
|
98 |
title="Abuse Pattern Detector (Multi-Message)",
|
99 |
-
|
100 |
-
allow_flagging="manual"
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
7 |
+
from abuse_type_mapping import determine_abuse_type
|
8 |
|
9 |
+
# custom fine-tuned sentiment model
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
11 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
|
12 |
+
|
13 |
+
# Load abuse pattern model
|
14 |
model_name = "SamanthaStorm/autotrain-c1un8-p8vzo"
|
15 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
16 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
17 |
|
18 |
+
LABELS = [
|
19 |
+
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
20 |
+
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive",
|
21 |
+
"suicidal_threat", "physical_threat", "extreme_control"
|
22 |
+
]
|
23 |
+
|
24 |
+
THRESHOLDS = {
|
25 |
+
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
|
26 |
+
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
|
27 |
+
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25,
|
28 |
+
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.30
|
29 |
+
}
|
30 |
+
|
31 |
PATTERN_LABELS = LABELS[:15]
|
32 |
DANGER_LABELS = LABELS[15:18]
|
|
|
|
|
33 |
|
34 |
+
EXPLANATIONS = {
|
35 |
+
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
|
36 |
+
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
|
37 |
+
"projection": "Projection involves accusing the victim of behaviors the abuser exhibits.",
|
38 |
+
"dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.",
|
39 |
+
"mockery": "Mockery ridicules someone in a hurtful, humiliating way.",
|
40 |
+
"recovery_phase": "Recovery phase dismisses someone's emotional healing process.",
|
41 |
+
"insults": "Insults are derogatory remarks aimed at degrading someone.",
|
42 |
+
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
|
43 |
+
"deflection": "Deflection avoids accountability by redirecting blame.",
|
44 |
+
"control": "Control restricts autonomy through manipulation or coercion.",
|
45 |
+
"extreme_control": "Extreme control dominates decisions and behaviors entirely.",
|
46 |
+
"physical_threat": "Physical threats signal risk of bodily harm.",
|
47 |
+
"suicidal_threat": "Suicidal threats manipulate others using self-harm threats.",
|
48 |
+
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
|
49 |
+
"manipulation": "Manipulation deceives to influence or control outcomes.",
|
50 |
+
"non_abusive": "Non-abusive language is respectful and free of coercion.",
|
51 |
+
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
|
52 |
+
}
|
53 |
+
|
54 |
+
PATTERN_WEIGHTS = {
|
55 |
+
"physical_threat": 1.5,
|
56 |
+
"suicidal_threat": 1.4,
|
57 |
+
"extreme_control": 1.5,
|
58 |
+
"gaslighting": 1.3,
|
59 |
+
"control": 1.2,
|
60 |
+
"dismissiveness": 0.8,
|
61 |
+
"non_abusive": 0.0
|
62 |
+
}
|
63 |
|
64 |
def custom_sentiment(text):
|
65 |
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
|
|
72 |
score = probs[0][label_idx].item()
|
73 |
return {"label": label, "score": score}
|
74 |
|
|
|
75 |
def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
76 |
weighted_scores = []
|
77 |
for label, score in zip(LABELS, scores):
|
|
|
80 |
weighted_scores.append(score * weight)
|
81 |
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
|
82 |
motif_hits = motif_hits or []
|
83 |
+
if any(label in motif_hits for label in {"physical_threat", "suicidal_threat", "extreme_control"}):
|
84 |
base_score = max(base_score, 75.0)
|
85 |
return base_score
|
86 |
|
|
|
87 |
def interpret_abuse_level(score):
|
88 |
if score > 80:
|
89 |
return "Extreme / High Risk"
|
|
|
95 |
return "Mild Concern"
|
96 |
return "Very Low / Likely Safe"
|
97 |
|
98 |
+
def analyze_single_message(text, contextual_flags):
|
|
|
|
|
|
|
|
|
|
|
99 |
motif_flags, matched_phrases = detect_motifs(text)
|
100 |
+
risk_flags = list(set(contextual_flags + motif_flags)) if contextual_flags else motif_flags
|
101 |
+
sentiment_result = custom_sentiment(text)
|
102 |
+
sentiment_label = sentiment_result["label"]
|
103 |
+
sentiment_score = sentiment_result["score"]
|
104 |
+
thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment_label == "undermining" else THRESHOLDS.copy()
|
105 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
106 |
with torch.no_grad():
|
107 |
outputs = model(**inputs)
|
108 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
109 |
+
threshold_labels = [label for label, score in zip(PATTERN_LABELS, scores[:15]) if score > thresholds[label]]
|
110 |
+
phrase_labels = [label for label, _ in matched_phrases]
|
111 |
+
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
112 |
+
abuse_level = calculate_abuse_level(scores, thresholds, motif_hits=[label for label, _ in matched_phrases])
|
113 |
+
abuse_description = interpret_abuse_level(abuse_level)
|
114 |
+
return {
|
115 |
+
"text": text,
|
116 |
+
"score": abuse_level,
|
117 |
+
"summary": abuse_description,
|
118 |
+
"sentiment": f"{sentiment_label} ({sentiment_score*100:.2f}%)",
|
119 |
+
"top_labels": pattern_labels_used[:2],
|
120 |
+
"matched_phrases": matched_phrases,
|
121 |
+
"flags": contextual_flags
|
122 |
+
}
|
123 |
|
124 |
+
def analyze_composite(msg1, msg2, msg3, flags):
|
125 |
+
results = [analyze_single_message(t, flags) for t in [msg1, msg2, msg3] if t.strip()]
|
126 |
+
composite_score = round(np.mean([r['score'] for r in results]), 2) if results else 0.0
|
127 |
+
return [
|
128 |
+
f"Score: {r['score']}% – {r['summary']}\nSentiment: {r['sentiment']}\nFlags: {', '.join(r['flags']) if r['flags'] else 'None'}\nLabels: {', '.join(r['top_labels'])}" for r in results
|
129 |
+
] + [f"Composite Abuse Score: {composite_score}%"]
|
130 |
|
131 |
iface = gr.Interface(
|
132 |
fn=analyze_composite,
|
133 |
inputs=[
|
134 |
gr.Textbox(label="Message 1"),
|
135 |
gr.Textbox(label="Message 2"),
|
136 |
+
gr.Textbox(label="Message 3"),
|
137 |
+
gr.CheckboxGroup(label="Contextual Flags", choices=[
|
138 |
+
"They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
|
139 |
+
"They monitor/follow me", "I feel unsafe when alone with them"
|
140 |
+
])
|
141 |
],
|
142 |
outputs=[
|
143 |
gr.Textbox(label="Message 1 Result"),
|
144 |
gr.Textbox(label="Message 2 Result"),
|
145 |
gr.Textbox(label="Message 3 Result"),
|
146 |
+
gr.Textbox(label="Composite Score")
|
147 |
],
|
148 |
title="Abuse Pattern Detector (Multi-Message)",
|
149 |
+
flagging_mode="manual"
|
|
|
150 |
)
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
iface.queue().launch()
|