Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
7 |
|
8 |
-
#
|
9 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
|
11 |
|
@@ -16,19 +16,15 @@ tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
16 |
|
17 |
LABELS = [
|
18 |
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
19 |
-
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase"
|
20 |
-
"suicidal_threat", "physical_threat", "extreme_control"
|
21 |
]
|
22 |
|
23 |
THRESHOLDS = {
|
24 |
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
|
25 |
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
|
26 |
-
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25
|
27 |
-
"non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.30
|
28 |
}
|
29 |
|
30 |
-
PATTERN_LABELS = LABELS[:15]
|
31 |
-
|
32 |
EXPLANATIONS = {
|
33 |
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
|
34 |
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
|
@@ -40,12 +36,13 @@ EXPLANATIONS = {
|
|
40 |
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
|
41 |
"deflection": "Deflection avoids accountability by redirecting blame.",
|
42 |
"control": "Control restricts autonomy through manipulation or coercion.",
|
|
|
43 |
"manipulation": "Manipulation deceives to influence or control outcomes.",
|
44 |
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
|
45 |
}
|
46 |
|
47 |
PATTERN_WEIGHTS = {
|
48 |
-
"gaslighting": 1.3, "
|
49 |
}
|
50 |
|
51 |
def custom_sentiment(text):
|
@@ -57,10 +54,11 @@ def custom_sentiment(text):
|
|
57 |
label_map = {0: "supportive", 1: "undermining"}
|
58 |
return {"label": label_map[label_idx], "score": probs[0][label_idx].item()}
|
59 |
|
60 |
-
def calculate_abuse_level(scores, thresholds, motif_hits=None):
|
61 |
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
|
62 |
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
|
63 |
-
|
|
|
64 |
|
65 |
def interpret_abuse_level(score):
|
66 |
if score > 80:
|
@@ -81,24 +79,36 @@ def analyze_single_message(text, thresholds, motif_flags):
|
|
81 |
with torch.no_grad():
|
82 |
outputs = model(**inputs)
|
83 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
|
|
|
|
|
|
84 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
85 |
-
|
86 |
-
return abuse_level,
|
87 |
|
88 |
def analyze_composite(msg1, msg2, msg3, flags):
|
89 |
thresholds = THRESHOLDS
|
90 |
-
messages = [
|
91 |
-
|
92 |
-
if not
|
93 |
return "Please enter at least one message."
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
gr.Textbox(label="Message 1"),
|
103 |
gr.Textbox(label="Message 2"),
|
104 |
gr.Textbox(label="Message 3")
|
@@ -111,7 +121,7 @@ checkboxes = gr.CheckboxGroup(label="Contextual Flags", choices=[
|
|
111 |
|
112 |
iface = gr.Interface(
|
113 |
fn=analyze_composite,
|
114 |
-
inputs=
|
115 |
outputs=gr.Textbox(label="Results"),
|
116 |
title="Abuse Pattern Detector (Multi-Message)",
|
117 |
allow_flagging="manual"
|
|
|
5 |
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
6 |
from motif_tagging import detect_motifs
|
7 |
|
8 |
+
# custom fine-tuned sentiment model
|
9 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
|
10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
|
11 |
|
|
|
16 |
|
17 |
LABELS = [
|
18 |
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
|
19 |
+
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase"
|
|
|
20 |
]
|
21 |
|
22 |
THRESHOLDS = {
|
23 |
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
|
24 |
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
|
25 |
+
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25
|
|
|
26 |
}
|
27 |
|
|
|
|
|
28 |
EXPLANATIONS = {
|
29 |
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
|
30 |
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
|
|
|
36 |
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
|
37 |
"deflection": "Deflection avoids accountability by redirecting blame.",
|
38 |
"control": "Control restricts autonomy through manipulation or coercion.",
|
39 |
+
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
|
40 |
"manipulation": "Manipulation deceives to influence or control outcomes.",
|
41 |
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
|
42 |
}
|
43 |
|
44 |
PATTERN_WEIGHTS = {
|
45 |
+
"gaslighting": 1.3, "mockery": 1.2, "control": 1.2, "dismissiveness": 0.8
|
46 |
}
|
47 |
|
48 |
def custom_sentiment(text):
|
|
|
54 |
label_map = {0: "supportive", 1: "undermining"}
|
55 |
return {"label": label_map[label_idx], "score": probs[0][label_idx].item()}
|
56 |
|
57 |
+
def calculate_abuse_level(scores, thresholds, motif_hits=None, flag_multiplier=1.0):
|
58 |
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
|
59 |
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
|
60 |
+
base_score *= flag_multiplier
|
61 |
+
return min(base_score, 100.0)
|
62 |
|
63 |
def interpret_abuse_level(score):
|
64 |
if score > 80:
|
|
|
79 |
with torch.no_grad():
|
80 |
outputs = model(**inputs)
|
81 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
82 |
+
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
|
83 |
+
phrase_labels = [label for label, _ in matched_phrases]
|
84 |
+
pattern_labels_used = list(set(threshold_labels + phrase_labels))
|
85 |
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
|
86 |
+
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
|
87 |
+
return abuse_level, pattern_labels_used, top_patterns
|
88 |
|
89 |
def analyze_composite(msg1, msg2, msg3, flags):
|
90 |
thresholds = THRESHOLDS
|
91 |
+
messages = [msg1, msg2, msg3]
|
92 |
+
active_messages = [m for m in messages if m.strip()]
|
93 |
+
if not active_messages:
|
94 |
return "Please enter at least one message."
|
95 |
+
|
96 |
+
flag_multiplier = 1 + (0.1 * len(flags)) # each checked flag increases weight by 10%
|
97 |
+
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
|
98 |
+
abuse_scores = [r[0] for r in results]
|
99 |
+
composite_score = round(sum(abuse_scores) / len(abuse_scores), 2)
|
100 |
+
label_sets = [label for result in results for label in result[1]]
|
101 |
+
label_counts = {label: label_sets.count(label) for label in set(label_sets)}
|
102 |
+
top_labels = sorted(label_counts.items(), key=lambda x: x[1], reverse=True)[:2]
|
103 |
+
top_explanations = [EXPLANATIONS.get(label, "") for label, _ in top_labels]
|
104 |
+
|
105 |
+
result = f"These messages show patterns of {', '.join(label for label, _ in top_labels)} and are estimated to be {composite_score}% likely abusive."
|
106 |
+
for expl in top_explanations:
|
107 |
+
if expl:
|
108 |
+
result += f"\n• {expl}"
|
109 |
+
return result
|
110 |
+
|
111 |
+
textbox_inputs = [
|
112 |
gr.Textbox(label="Message 1"),
|
113 |
gr.Textbox(label="Message 2"),
|
114 |
gr.Textbox(label="Message 3")
|
|
|
121 |
|
122 |
iface = gr.Interface(
|
123 |
fn=analyze_composite,
|
124 |
+
inputs=textbox_inputs + [checkboxes],
|
125 |
outputs=gr.Textbox(label="Results"),
|
126 |
title="Abuse Pattern Detector (Multi-Message)",
|
127 |
allow_flagging="manual"
|