Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,24 +6,17 @@ from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
|
| 6 |
from motif_tagging import detect_motifs
|
| 7 |
import re
|
| 8 |
|
| 9 |
-
# --- Sentiment Model
|
| 10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
| 11 |
sentiment_model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
| 12 |
|
| 13 |
EMOTION_TO_SENTIMENT = {
|
| 14 |
-
"joy": "supportive",
|
| 15 |
-
"
|
| 16 |
-
"
|
| 17 |
-
"neutral": "supportive",
|
| 18 |
-
"sadness": "undermining",
|
| 19 |
-
"anger": "undermining",
|
| 20 |
-
"fear": "undermining",
|
| 21 |
-
"disgust": "undermining",
|
| 22 |
-
"shame": "undermining",
|
| 23 |
-
"guilt": "undermining"
|
| 24 |
}
|
| 25 |
|
| 26 |
-
# --- Abuse
|
| 27 |
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp"
|
| 28 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
| 29 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
@@ -35,69 +28,48 @@ LABELS = [
|
|
| 35 |
]
|
| 36 |
|
| 37 |
THRESHOLDS = {
|
| 38 |
-
"blame shifting": 0.3,
|
| 39 |
-
"
|
| 40 |
-
"
|
| 41 |
-
"dismissiveness": 0.45,
|
| 42 |
-
"gaslighting": 0.30,
|
| 43 |
-
"guilt tripping": 0.20,
|
| 44 |
-
"insults": 0.34,
|
| 45 |
-
"obscure language": 0.25,
|
| 46 |
-
"projection": 0.35,
|
| 47 |
-
"recovery phase": 0.25,
|
| 48 |
-
"threat": 0.25
|
| 49 |
}
|
| 50 |
|
| 51 |
PATTERN_WEIGHTS = {
|
| 52 |
-
"gaslighting": 1.3,
|
| 53 |
-
"
|
| 54 |
-
"dismissiveness": 0.8,
|
| 55 |
-
"blame shifting": 0.8,
|
| 56 |
-
"contradictory statements": 0.75
|
| 57 |
}
|
| 58 |
|
| 59 |
EXPLANATIONS = {
|
| 60 |
-
"blame shifting": "Blame-shifting
|
| 61 |
-
"contradictory statements": "
|
| 62 |
-
"control": "
|
| 63 |
-
"dismissiveness": "
|
| 64 |
-
"gaslighting": "
|
| 65 |
-
"guilt tripping": "
|
| 66 |
-
"insults": "
|
| 67 |
-
"obscure language": "
|
| 68 |
-
"projection": "
|
| 69 |
-
"recovery phase": "
|
| 70 |
-
"threat": "
|
| 71 |
}
|
| 72 |
|
| 73 |
RISK_SNIPPETS = {
|
| 74 |
"low": (
|
| 75 |
"🟢 Risk Level: Low",
|
| 76 |
"The language patterns here do not strongly indicate abuse.",
|
| 77 |
-
"
|
| 78 |
),
|
| 79 |
"moderate": (
|
| 80 |
"⚠️ Risk Level: Moderate to High",
|
| 81 |
-
"
|
| 82 |
-
"These patterns
|
| 83 |
),
|
| 84 |
"high": (
|
| 85 |
"🛑 Risk Level: High",
|
| 86 |
-
"
|
| 87 |
-
"Consider
|
| 88 |
)
|
| 89 |
}
|
| 90 |
|
| 91 |
-
def generate_risk_snippet(abuse_score, top_label):
|
| 92 |
-
if abuse_score >= 85:
|
| 93 |
-
risk_level = "high"
|
| 94 |
-
elif abuse_score >= 60:
|
| 95 |
-
risk_level = "moderate"
|
| 96 |
-
else:
|
| 97 |
-
risk_level = "low"
|
| 98 |
-
title, summary, advice = RISK_SNIPPETS[risk_level]
|
| 99 |
-
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
| 100 |
-
|
| 101 |
DARVO_PATTERNS = {
|
| 102 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
| 103 |
}
|
|
@@ -107,8 +79,21 @@ DARVO_MOTIFS = [
|
|
| 107 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
| 108 |
]
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
def detect_contradiction(message):
|
| 111 |
-
|
| 112 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
| 113 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
| 114 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
|
@@ -116,72 +101,56 @@ def detect_contradiction(message):
|
|
| 116 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
| 117 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
|
| 118 |
]
|
| 119 |
-
return any(re.search(
|
| 120 |
|
| 121 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
| 122 |
-
pattern_hits = len([p
|
| 123 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
| 124 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
| 125 |
-
motif_hits = len([m
|
| 126 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
| 127 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
| 128 |
-
|
| 129 |
-
0.3 * pattern_score +
|
| 130 |
-
0.3 * sentiment_shift_score +
|
| 131 |
-
0.25 * motif_score +
|
| 132 |
-
0.15 * contradiction_score
|
| 133 |
-
)
|
| 134 |
-
return round(min(darvo_score, 1.0), 3)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
| 141 |
-
("Partner injured or threatened your pet(s)", 3),
|
| 142 |
-
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
| 143 |
-
("Partner forced or coerced you into unwanted sexual acts", 3),
|
| 144 |
-
("Partner threatened to take away your children", 2),
|
| 145 |
-
("Violence has increased in frequency or severity", 3),
|
| 146 |
-
("Partner monitors your calls/GPS/social media", 2)
|
| 147 |
-
]
|
| 148 |
|
| 149 |
def analyze_single_message(text, thresholds, motif_flags):
|
| 150 |
motif_hits, matched_phrases = detect_motifs(text)
|
| 151 |
|
| 152 |
-
# Sentiment
|
| 153 |
input_ids = sentiment_tokenizer(f"emotion: {text}", return_tensors="pt").input_ids
|
| 154 |
with torch.no_grad():
|
| 155 |
-
|
| 156 |
-
emotion = sentiment_tokenizer.decode(
|
| 157 |
sentiment = EMOTION_TO_SENTIMENT.get(emotion, "undermining")
|
| 158 |
sentiment_score = 0.5 if sentiment == "undermining" else 0.0
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
motifs = [
|
| 165 |
|
| 166 |
-
# Model Prediction
|
| 167 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 168 |
with torch.no_grad():
|
| 169 |
outputs = model(**inputs)
|
| 170 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
| 171 |
|
| 172 |
-
threshold_labels = [
|
| 173 |
-
top_patterns = sorted(
|
| 174 |
pattern_labels = threshold_labels + [label for label, _ in matched_phrases]
|
| 175 |
|
|
|
|
| 176 |
darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag)
|
| 177 |
|
| 178 |
-
return
|
| 179 |
-
|
| 180 |
-
threshold_labels,
|
| 181 |
-
top_patterns,
|
| 182 |
-
darvo_score,
|
| 183 |
-
{"label": sentiment, "emotion": emotion}
|
| 184 |
-
)
|
| 185 |
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
| 186 |
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
| 187 |
none_selected = answers_and_none[-1]
|
|
@@ -196,23 +165,19 @@ def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
|
| 196 |
results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active]
|
| 197 |
abuse_scores = [r[0] for r in results]
|
| 198 |
darvo_scores = [r[3] for r in results]
|
| 199 |
-
|
| 200 |
-
composite_abuse = int(round(sum(abuse_scores)/len(abuse_scores)))
|
| 201 |
-
avg_darvo = round(sum(darvo_scores)/len(darvo_scores), 3)
|
| 202 |
|
| 203 |
out = f"Abuse Intensity: {composite_abuse}%\n"
|
| 204 |
-
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _,w in ESCALATION_QUESTIONS)})"
|
| 205 |
-
out += generate_risk_snippet(composite_abuse,
|
| 206 |
if avg_darvo > 0.25:
|
| 207 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
| 208 |
out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
| 209 |
return out
|
| 210 |
|
| 211 |
-
textbox_inputs = [
|
| 212 |
-
gr.Textbox(label="Message 1"),
|
| 213 |
-
gr.Textbox(label="Message 2"),
|
| 214 |
-
gr.Textbox(label="Message 3")
|
| 215 |
-
]
|
| 216 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
| 217 |
none_box = gr.Checkbox(label="None of the above")
|
| 218 |
|
|
|
|
| 6 |
from motif_tagging import detect_motifs
|
| 7 |
import re
|
| 8 |
|
| 9 |
+
# --- Sentiment Model ---
|
| 10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
| 11 |
sentiment_model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
| 12 |
|
| 13 |
EMOTION_TO_SENTIMENT = {
|
| 14 |
+
"joy": "supportive", "love": "supportive", "surprise": "supportive", "neutral": "supportive",
|
| 15 |
+
"sadness": "undermining", "anger": "undermining", "fear": "undermining",
|
| 16 |
+
"disgust": "undermining", "shame": "undermining", "guilt": "undermining"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
+
# --- Abuse Model ---
|
| 20 |
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp"
|
| 21 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
| 22 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 28 |
]
|
| 29 |
|
| 30 |
THRESHOLDS = {
|
| 31 |
+
"blame shifting": 0.3, "contradictory statements": 0.32, "control": 0.48, "dismissiveness": 0.45,
|
| 32 |
+
"gaslighting": 0.30, "guilt tripping": 0.20, "insults": 0.34, "obscure language": 0.25,
|
| 33 |
+
"projection": 0.35, "recovery phase": 0.25, "threat": 0.25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
PATTERN_WEIGHTS = {
|
| 37 |
+
"gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8,
|
| 38 |
+
"blame shifting": 0.8, "contradictory statements": 0.75
|
|
|
|
|
|
|
|
|
|
| 39 |
}
|
| 40 |
|
| 41 |
EXPLANATIONS = {
|
| 42 |
+
"blame shifting": "Blame-shifting redirects responsibility to avoid accountability.",
|
| 43 |
+
"contradictory statements": "Flipping positions or denying previous claims.",
|
| 44 |
+
"control": "Attempts to restrict another person’s autonomy.",
|
| 45 |
+
"dismissiveness": "Disregarding or belittling someone’s feelings or needs.",
|
| 46 |
+
"gaslighting": "Manipulating someone into questioning their reality.",
|
| 47 |
+
"guilt tripping": "Using guilt to control or pressure.",
|
| 48 |
+
"insults": "Derogatory or demeaning language.",
|
| 49 |
+
"obscure language": "Vague, superior, or confusing language used manipulatively.",
|
| 50 |
+
"projection": "Accusing someone else of your own behaviors.",
|
| 51 |
+
"recovery phase": "Resetting tension without real change.",
|
| 52 |
+
"threat": "Using fear or harm to control or intimidate."
|
| 53 |
}
|
| 54 |
|
| 55 |
RISK_SNIPPETS = {
|
| 56 |
"low": (
|
| 57 |
"🟢 Risk Level: Low",
|
| 58 |
"The language patterns here do not strongly indicate abuse.",
|
| 59 |
+
"Check in with yourself and monitor for repeated patterns."
|
| 60 |
),
|
| 61 |
"moderate": (
|
| 62 |
"⚠️ Risk Level: Moderate to High",
|
| 63 |
+
"Language includes control, guilt, or reversal tactics.",
|
| 64 |
+
"These patterns reduce self-trust. Document or talk with someone safe."
|
| 65 |
),
|
| 66 |
"high": (
|
| 67 |
"🛑 Risk Level: High",
|
| 68 |
+
"Strong indicators of coercive control or threat present.",
|
| 69 |
+
"Consider building a safety plan or contacting support."
|
| 70 |
)
|
| 71 |
}
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
DARVO_PATTERNS = {
|
| 74 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
| 75 |
}
|
|
|
|
| 79 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
| 80 |
]
|
| 81 |
|
| 82 |
+
ESCALATION_QUESTIONS = [
|
| 83 |
+
("Partner has access to firearms or weapons", 4),
|
| 84 |
+
("Partner threatened to kill you", 3),
|
| 85 |
+
("Partner threatened you with a weapon", 3),
|
| 86 |
+
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
| 87 |
+
("Partner injured or threatened your pet(s)", 3),
|
| 88 |
+
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
| 89 |
+
("Partner forced or coerced you into unwanted sexual acts", 3),
|
| 90 |
+
("Partner threatened to take away your children", 2),
|
| 91 |
+
("Violence has increased in frequency or severity", 3),
|
| 92 |
+
("Partner monitors your calls/GPS/social media", 2)
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
def detect_contradiction(message):
|
| 96 |
+
patterns = [
|
| 97 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
| 98 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
| 99 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
|
|
|
| 101 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
| 102 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
|
| 103 |
]
|
| 104 |
+
return any(re.search(p, message, flags) for p, flags in patterns)
|
| 105 |
|
| 106 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
| 107 |
+
pattern_hits = len([p for p in patterns if p in DARVO_PATTERNS])
|
| 108 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
| 109 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
| 110 |
+
motif_hits = len([m for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
| 111 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
| 112 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
| 113 |
+
return round(min(0.3 * pattern_score + 0.3 * sentiment_shift_score + 0.25 * motif_score + 0.15 * contradiction_score, 1.0), 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
def generate_risk_snippet(score, top_label):
|
| 116 |
+
level = "high" if score >= 85 else "moderate" if score >= 60 else "low"
|
| 117 |
+
title, summary, advice = RISK_SNIPPETS[level]
|
| 118 |
+
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def analyze_single_message(text, thresholds, motif_flags):
|
| 121 |
motif_hits, matched_phrases = detect_motifs(text)
|
| 122 |
|
| 123 |
+
# Sentiment
|
| 124 |
input_ids = sentiment_tokenizer(f"emotion: {text}", return_tensors="pt").input_ids
|
| 125 |
with torch.no_grad():
|
| 126 |
+
sentiment_out = sentiment_model.generate(input_ids)
|
| 127 |
+
emotion = sentiment_tokenizer.decode(sentiment_out[0], skip_special_tokens=True).lower()
|
| 128 |
sentiment = EMOTION_TO_SENTIMENT.get(emotion, "undermining")
|
| 129 |
sentiment_score = 0.5 if sentiment == "undermining" else 0.0
|
| 130 |
|
| 131 |
+
# Adjust thresholds
|
| 132 |
+
adjusted_thresholds = {
|
| 133 |
+
k: v * 0.8 if sentiment == "undermining" else v * 1.2 if sentiment == "supportive" else v
|
| 134 |
+
for k, v in thresholds.items()
|
| 135 |
+
}
|
| 136 |
|
| 137 |
+
contradiction_flag = detect_contradiction(text)
|
| 138 |
+
motifs = [text for _, text in matched_phrases]
|
| 139 |
|
|
|
|
| 140 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 141 |
with torch.no_grad():
|
| 142 |
outputs = model(**inputs)
|
| 143 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
| 144 |
|
| 145 |
+
threshold_labels = [l for l, s in zip(LABELS, scores) if s > adjusted_thresholds[l]]
|
| 146 |
+
top_patterns = sorted(zip(LABELS, scores), key=lambda x: x[1], reverse=True)[:2]
|
| 147 |
pattern_labels = threshold_labels + [label for label, _ in matched_phrases]
|
| 148 |
|
| 149 |
+
abuse_score = round(np.mean([s * PATTERN_WEIGHTS.get(l, 1.0) for l, s in top_patterns]) * 100, 2)
|
| 150 |
darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag)
|
| 151 |
|
| 152 |
+
return abuse_score, threshold_labels, top_patterns, darvo_score, {"label": sentiment, "emotion": emotion}
|
| 153 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
| 155 |
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
| 156 |
none_selected = answers_and_none[-1]
|
|
|
|
| 165 |
results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active]
|
| 166 |
abuse_scores = [r[0] for r in results]
|
| 167 |
darvo_scores = [r[3] for r in results]
|
| 168 |
+
top_label = max({label for r in results for label in r[2]}, key=lambda l: abuse_scores[0])
|
| 169 |
+
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
|
| 170 |
+
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
| 171 |
|
| 172 |
out = f"Abuse Intensity: {composite_abuse}%\n"
|
| 173 |
+
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})"
|
| 174 |
+
out += generate_risk_snippet(composite_abuse, top_label)
|
| 175 |
if avg_darvo > 0.25:
|
| 176 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
| 177 |
out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
| 178 |
return out
|
| 179 |
|
| 180 |
+
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
| 182 |
none_box = gr.Checkbox(label="None of the above")
|
| 183 |
|