Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,24 +6,17 @@ from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
|
6 |
from motif_tagging import detect_motifs
|
7 |
import re
|
8 |
|
9 |
-
# --- Sentiment Model
|
10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
11 |
sentiment_model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
12 |
|
13 |
EMOTION_TO_SENTIMENT = {
|
14 |
-
"joy": "supportive",
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"neutral": "supportive",
|
18 |
-
"sadness": "undermining",
|
19 |
-
"anger": "undermining",
|
20 |
-
"fear": "undermining",
|
21 |
-
"disgust": "undermining",
|
22 |
-
"shame": "undermining",
|
23 |
-
"guilt": "undermining"
|
24 |
}
|
25 |
|
26 |
-
# --- Abuse
|
27 |
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp"
|
28 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
29 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
@@ -35,69 +28,48 @@ LABELS = [
|
|
35 |
]
|
36 |
|
37 |
THRESHOLDS = {
|
38 |
-
"blame shifting": 0.3,
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"dismissiveness": 0.45,
|
42 |
-
"gaslighting": 0.30,
|
43 |
-
"guilt tripping": 0.20,
|
44 |
-
"insults": 0.34,
|
45 |
-
"obscure language": 0.25,
|
46 |
-
"projection": 0.35,
|
47 |
-
"recovery phase": 0.25,
|
48 |
-
"threat": 0.25
|
49 |
}
|
50 |
|
51 |
PATTERN_WEIGHTS = {
|
52 |
-
"gaslighting": 1.3,
|
53 |
-
"
|
54 |
-
"dismissiveness": 0.8,
|
55 |
-
"blame shifting": 0.8,
|
56 |
-
"contradictory statements": 0.75
|
57 |
}
|
58 |
|
59 |
EXPLANATIONS = {
|
60 |
-
"blame shifting": "Blame-shifting
|
61 |
-
"contradictory statements": "
|
62 |
-
"control": "
|
63 |
-
"dismissiveness": "
|
64 |
-
"gaslighting": "
|
65 |
-
"guilt tripping": "
|
66 |
-
"insults": "
|
67 |
-
"obscure language": "
|
68 |
-
"projection": "
|
69 |
-
"recovery phase": "
|
70 |
-
"threat": "
|
71 |
}
|
72 |
|
73 |
RISK_SNIPPETS = {
|
74 |
"low": (
|
75 |
"🟢 Risk Level: Low",
|
76 |
"The language patterns here do not strongly indicate abuse.",
|
77 |
-
"
|
78 |
),
|
79 |
"moderate": (
|
80 |
"⚠️ Risk Level: Moderate to High",
|
81 |
-
"
|
82 |
-
"These patterns
|
83 |
),
|
84 |
"high": (
|
85 |
"🛑 Risk Level: High",
|
86 |
-
"
|
87 |
-
"Consider
|
88 |
)
|
89 |
}
|
90 |
|
91 |
-
def generate_risk_snippet(abuse_score, top_label):
|
92 |
-
if abuse_score >= 85:
|
93 |
-
risk_level = "high"
|
94 |
-
elif abuse_score >= 60:
|
95 |
-
risk_level = "moderate"
|
96 |
-
else:
|
97 |
-
risk_level = "low"
|
98 |
-
title, summary, advice = RISK_SNIPPETS[risk_level]
|
99 |
-
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
100 |
-
|
101 |
DARVO_PATTERNS = {
|
102 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
103 |
}
|
@@ -107,8 +79,21 @@ DARVO_MOTIFS = [
|
|
107 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
108 |
]
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
def detect_contradiction(message):
|
111 |
-
|
112 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
113 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
114 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
@@ -116,72 +101,56 @@ def detect_contradiction(message):
|
|
116 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
117 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
|
118 |
]
|
119 |
-
return any(re.search(
|
120 |
|
121 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
122 |
-
pattern_hits = len([p
|
123 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
124 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
125 |
-
motif_hits = len([m
|
126 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
127 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
128 |
-
|
129 |
-
0.3 * pattern_score +
|
130 |
-
0.3 * sentiment_shift_score +
|
131 |
-
0.25 * motif_score +
|
132 |
-
0.15 * contradiction_score
|
133 |
-
)
|
134 |
-
return round(min(darvo_score, 1.0), 3)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
141 |
-
("Partner injured or threatened your pet(s)", 3),
|
142 |
-
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
143 |
-
("Partner forced or coerced you into unwanted sexual acts", 3),
|
144 |
-
("Partner threatened to take away your children", 2),
|
145 |
-
("Violence has increased in frequency or severity", 3),
|
146 |
-
("Partner monitors your calls/GPS/social media", 2)
|
147 |
-
]
|
148 |
|
149 |
def analyze_single_message(text, thresholds, motif_flags):
|
150 |
motif_hits, matched_phrases = detect_motifs(text)
|
151 |
|
152 |
-
# Sentiment
|
153 |
input_ids = sentiment_tokenizer(f"emotion: {text}", return_tensors="pt").input_ids
|
154 |
with torch.no_grad():
|
155 |
-
|
156 |
-
emotion = sentiment_tokenizer.decode(
|
157 |
sentiment = EMOTION_TO_SENTIMENT.get(emotion, "undermining")
|
158 |
sentiment_score = 0.5 if sentiment == "undermining" else 0.0
|
159 |
|
160 |
-
#
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
motifs = [
|
165 |
|
166 |
-
# Model Prediction
|
167 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
168 |
with torch.no_grad():
|
169 |
outputs = model(**inputs)
|
170 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
171 |
|
172 |
-
threshold_labels = [
|
173 |
-
top_patterns = sorted(
|
174 |
pattern_labels = threshold_labels + [label for label, _ in matched_phrases]
|
175 |
|
|
|
176 |
darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag)
|
177 |
|
178 |
-
return
|
179 |
-
|
180 |
-
threshold_labels,
|
181 |
-
top_patterns,
|
182 |
-
darvo_score,
|
183 |
-
{"label": sentiment, "emotion": emotion}
|
184 |
-
)
|
185 |
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
186 |
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
187 |
none_selected = answers_and_none[-1]
|
@@ -196,23 +165,19 @@ def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
|
196 |
results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active]
|
197 |
abuse_scores = [r[0] for r in results]
|
198 |
darvo_scores = [r[3] for r in results]
|
199 |
-
|
200 |
-
composite_abuse = int(round(sum(abuse_scores)/len(abuse_scores)))
|
201 |
-
avg_darvo = round(sum(darvo_scores)/len(darvo_scores), 3)
|
202 |
|
203 |
out = f"Abuse Intensity: {composite_abuse}%\n"
|
204 |
-
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _,w in ESCALATION_QUESTIONS)})"
|
205 |
-
out += generate_risk_snippet(composite_abuse,
|
206 |
if avg_darvo > 0.25:
|
207 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
208 |
out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
209 |
return out
|
210 |
|
211 |
-
textbox_inputs = [
|
212 |
-
gr.Textbox(label="Message 1"),
|
213 |
-
gr.Textbox(label="Message 2"),
|
214 |
-
gr.Textbox(label="Message 3")
|
215 |
-
]
|
216 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
217 |
none_box = gr.Checkbox(label="None of the above")
|
218 |
|
|
|
6 |
from motif_tagging import detect_motifs
|
7 |
import re
|
8 |
|
9 |
+
# --- Sentiment Model ---
|
10 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
11 |
sentiment_model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-emotion")
|
12 |
|
13 |
EMOTION_TO_SENTIMENT = {
|
14 |
+
"joy": "supportive", "love": "supportive", "surprise": "supportive", "neutral": "supportive",
|
15 |
+
"sadness": "undermining", "anger": "undermining", "fear": "undermining",
|
16 |
+
"disgust": "undermining", "shame": "undermining", "guilt": "undermining"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
|
19 |
+
# --- Abuse Model ---
|
20 |
model_name = "SamanthaStorm/autotrain-jlpi4-mllvp"
|
21 |
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
22 |
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
28 |
]
|
29 |
|
30 |
THRESHOLDS = {
|
31 |
+
"blame shifting": 0.3, "contradictory statements": 0.32, "control": 0.48, "dismissiveness": 0.45,
|
32 |
+
"gaslighting": 0.30, "guilt tripping": 0.20, "insults": 0.34, "obscure language": 0.25,
|
33 |
+
"projection": 0.35, "recovery phase": 0.25, "threat": 0.25
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
PATTERN_WEIGHTS = {
|
37 |
+
"gaslighting": 1.3, "control": 1.2, "dismissiveness": 0.8,
|
38 |
+
"blame shifting": 0.8, "contradictory statements": 0.75
|
|
|
|
|
|
|
39 |
}
|
40 |
|
41 |
EXPLANATIONS = {
|
42 |
+
"blame shifting": "Blame-shifting redirects responsibility to avoid accountability.",
|
43 |
+
"contradictory statements": "Flipping positions or denying previous claims.",
|
44 |
+
"control": "Attempts to restrict another person’s autonomy.",
|
45 |
+
"dismissiveness": "Disregarding or belittling someone’s feelings or needs.",
|
46 |
+
"gaslighting": "Manipulating someone into questioning their reality.",
|
47 |
+
"guilt tripping": "Using guilt to control or pressure.",
|
48 |
+
"insults": "Derogatory or demeaning language.",
|
49 |
+
"obscure language": "Vague, superior, or confusing language used manipulatively.",
|
50 |
+
"projection": "Accusing someone else of your own behaviors.",
|
51 |
+
"recovery phase": "Resetting tension without real change.",
|
52 |
+
"threat": "Using fear or harm to control or intimidate."
|
53 |
}
|
54 |
|
55 |
RISK_SNIPPETS = {
|
56 |
"low": (
|
57 |
"🟢 Risk Level: Low",
|
58 |
"The language patterns here do not strongly indicate abuse.",
|
59 |
+
"Check in with yourself and monitor for repeated patterns."
|
60 |
),
|
61 |
"moderate": (
|
62 |
"⚠️ Risk Level: Moderate to High",
|
63 |
+
"Language includes control, guilt, or reversal tactics.",
|
64 |
+
"These patterns reduce self-trust. Document or talk with someone safe."
|
65 |
),
|
66 |
"high": (
|
67 |
"🛑 Risk Level: High",
|
68 |
+
"Strong indicators of coercive control or threat present.",
|
69 |
+
"Consider building a safety plan or contacting support."
|
70 |
)
|
71 |
}
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
DARVO_PATTERNS = {
|
74 |
"blame shifting", "projection", "dismissiveness", "guilt tripping", "contradictory statements"
|
75 |
}
|
|
|
79 |
"you’re attacking me", "i’m done trying", "i’m the only one who cares"
|
80 |
]
|
81 |
|
82 |
+
ESCALATION_QUESTIONS = [
|
83 |
+
("Partner has access to firearms or weapons", 4),
|
84 |
+
("Partner threatened to kill you", 3),
|
85 |
+
("Partner threatened you with a weapon", 3),
|
86 |
+
("Partner has ever choked you, even if you considered it consensual at the time", 4),
|
87 |
+
("Partner injured or threatened your pet(s)", 3),
|
88 |
+
("Partner has broken your things, punched or kicked walls, or thrown things ", 2),
|
89 |
+
("Partner forced or coerced you into unwanted sexual acts", 3),
|
90 |
+
("Partner threatened to take away your children", 2),
|
91 |
+
("Violence has increased in frequency or severity", 3),
|
92 |
+
("Partner monitors your calls/GPS/social media", 2)
|
93 |
+
]
|
94 |
+
|
95 |
def detect_contradiction(message):
|
96 |
+
patterns = [
|
97 |
(r"\b(i love you).{0,15}(i hate you|you ruin everything)", re.IGNORECASE),
|
98 |
(r"\b(i’m sorry).{0,15}(but you|if you hadn’t)", re.IGNORECASE),
|
99 |
(r"\b(i’m trying).{0,15}(you never|why do you)", re.IGNORECASE),
|
|
|
101 |
(r"\b(i don’t care).{0,15}(you never think of me)", re.IGNORECASE),
|
102 |
(r"\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)", re.IGNORECASE)
|
103 |
]
|
104 |
+
return any(re.search(p, message, flags) for p, flags in patterns)
|
105 |
|
106 |
def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
|
107 |
+
pattern_hits = len([p for p in patterns if p in DARVO_PATTERNS])
|
108 |
pattern_score = pattern_hits / len(DARVO_PATTERNS)
|
109 |
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
|
110 |
+
motif_hits = len([m for m in motifs_found if m.lower() in DARVO_MOTIFS])
|
111 |
motif_score = motif_hits / len(DARVO_MOTIFS)
|
112 |
contradiction_score = 1.0 if contradiction_flag else 0.0
|
113 |
+
return round(min(0.3 * pattern_score + 0.3 * sentiment_shift_score + 0.25 * motif_score + 0.15 * contradiction_score, 1.0), 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
def generate_risk_snippet(score, top_label):
|
116 |
+
level = "high" if score >= 85 else "moderate" if score >= 60 else "low"
|
117 |
+
title, summary, advice = RISK_SNIPPETS[level]
|
118 |
+
return f"\n\n{title}\n{summary} (Pattern: **{top_label}**)\n💡 {advice}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def analyze_single_message(text, thresholds, motif_flags):
|
121 |
motif_hits, matched_phrases = detect_motifs(text)
|
122 |
|
123 |
+
# Sentiment
|
124 |
input_ids = sentiment_tokenizer(f"emotion: {text}", return_tensors="pt").input_ids
|
125 |
with torch.no_grad():
|
126 |
+
sentiment_out = sentiment_model.generate(input_ids)
|
127 |
+
emotion = sentiment_tokenizer.decode(sentiment_out[0], skip_special_tokens=True).lower()
|
128 |
sentiment = EMOTION_TO_SENTIMENT.get(emotion, "undermining")
|
129 |
sentiment_score = 0.5 if sentiment == "undermining" else 0.0
|
130 |
|
131 |
+
# Adjust thresholds
|
132 |
+
adjusted_thresholds = {
|
133 |
+
k: v * 0.8 if sentiment == "undermining" else v * 1.2 if sentiment == "supportive" else v
|
134 |
+
for k, v in thresholds.items()
|
135 |
+
}
|
136 |
|
137 |
+
contradiction_flag = detect_contradiction(text)
|
138 |
+
motifs = [text for _, text in matched_phrases]
|
139 |
|
|
|
140 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
141 |
with torch.no_grad():
|
142 |
outputs = model(**inputs)
|
143 |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
|
144 |
|
145 |
+
threshold_labels = [l for l, s in zip(LABELS, scores) if s > adjusted_thresholds[l]]
|
146 |
+
top_patterns = sorted(zip(LABELS, scores), key=lambda x: x[1], reverse=True)[:2]
|
147 |
pattern_labels = threshold_labels + [label for label, _ in matched_phrases]
|
148 |
|
149 |
+
abuse_score = round(np.mean([s * PATTERN_WEIGHTS.get(l, 1.0) for l, s in top_patterns]) * 100, 2)
|
150 |
darvo_score = calculate_darvo_score(pattern_labels, 0.0, sentiment_score, motifs, contradiction_flag)
|
151 |
|
152 |
+
return abuse_score, threshold_labels, top_patterns, darvo_score, {"label": sentiment, "emotion": emotion}
|
153 |
+
|
|
|
|
|
|
|
|
|
|
|
154 |
def analyze_composite(msg1, msg2, msg3, *answers_and_none):
|
155 |
responses = answers_and_none[:len(ESCALATION_QUESTIONS)]
|
156 |
none_selected = answers_and_none[-1]
|
|
|
165 |
results = [analyze_single_message(m, THRESHOLDS.copy(), []) for m in active]
|
166 |
abuse_scores = [r[0] for r in results]
|
167 |
darvo_scores = [r[3] for r in results]
|
168 |
+
top_label = max({label for r in results for label in r[2]}, key=lambda l: abuse_scores[0])
|
169 |
+
composite_abuse = int(round(sum(abuse_scores) / len(abuse_scores)))
|
170 |
+
avg_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
|
171 |
|
172 |
out = f"Abuse Intensity: {composite_abuse}%\n"
|
173 |
+
out += f"Escalation Potential: {escalation_level} ({escalation_score}/{sum(w for _, w in ESCALATION_QUESTIONS)})"
|
174 |
+
out += generate_risk_snippet(composite_abuse, top_label)
|
175 |
if avg_darvo > 0.25:
|
176 |
level = "moderate" if avg_darvo < 0.65 else "high"
|
177 |
out += f"\n\nDARVO Score: {avg_darvo} → This indicates a **{level} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
|
178 |
return out
|
179 |
|
180 |
+
textbox_inputs = [gr.Textbox(label=f"Message {i+1}") for i in range(3)]
|
|
|
|
|
|
|
|
|
181 |
quiz_boxes = [gr.Checkbox(label=q) for q, _ in ESCALATION_QUESTIONS]
|
182 |
none_box = gr.Checkbox(label="None of the above")
|
183 |
|