import gradio as gr import torch from transformers import RobertaForSequenceClassification, RobertaTokenizer import numpy as np import tempfile # Load model and tokenizer model_name = "SamanthaStorm/abuse-pattern-detector-v2" model = RobertaForSequenceClassification.from_pretrained(model_name) tokenizer = RobertaTokenizer.from_pretrained(model_name) # Define labels (total 17 labels) LABELS = [ "gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection", "contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat", "extreme_control" ] # Custom thresholds per label (make sure these are exactly as in the original) THRESHOLDS = { "gaslighting": 0.15, "mockery": 0.15, "dismissiveness": 0.25, # Keep this as 0.25 (not 0.30) "control": 0.13, "guilt_tripping": 0.15, "apology_baiting": 0.15, "blame_shifting": 0.15, "projection": 0.20, "contradictory_statements": 0.15, "manipulation": 0.15, "deflection": 0.15, "insults": 0.20, "obscure_formal": 0.20, "recovery_phase": 0.15, "suicidal_threat": 0.08, "physical_threat": 0.045, "extreme_control": 0.30, } # Define label groups using slicing (first 14 are abuse patterns, last 3 are danger cues) PATTERN_LABELS = LABELS[:14] DANGER_LABELS = LABELS[14:] def calculate_abuse_level(scores, thresholds): triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]] if not triggered_scores: return 0.0 return round(np.mean(triggered_scores) * 100, 2) def interpret_abuse_level(score): if score > 80: return "Extreme / High Risk" elif score > 60: return "Severe / Harmful Pattern Present" elif score > 40: return "Likely Abuse" elif score > 20: return "Mild Concern" else: return "Very Low / Likely Safe" def analyze_messages(input_text): input_text = input_text.strip() if not input_text: return "Please enter a message for analysis.", None # Tokenize and predict inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy() # Count triggered labels using the correct slices pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14])) danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:])) # Abuse level calculation and severity interpretation abuse_level = calculate_abuse_level(scores, THRESHOLDS) abuse_description = interpret_abuse_level(abuse_level) # Resource logic (example logic; adjust as needed) if danger_flag_count >= 2: resources = "Immediate assistance recommended. Please seek professional help or contact emergency services." else: resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors." # Output combining counts, severity, and resource suggestion result = ( f"Abuse Patterns Detected: {pattern_count} out of {len(PATTERN_LABELS)}\n" f"Danger Flags Detected: {danger_flag_count} out of {len(DANGER_LABELS)}\n" f"Abuse Level: {abuse_level}% - {abuse_description}\n" f"Resources: {resources}" ) return result, scores iface = gr.Interface( fn=analyze_messages, inputs=gr.inputs.Textbox(lines=10, placeholder="Enter message here..."), outputs=["text", "json"], title="Abuse Pattern Detector" ) iface.launch()