import gradio as gr import torch import numpy as np from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers import RobertaForSequenceClassification, RobertaTokenizer from motif_tagging import detect_motifs # custom fine-tuned sentiment model sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment") sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment") # Load abuse pattern model model_name = "SamanthaStorm/abuse-pattern-detector-v2" model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True) tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True) LABELS = [ "gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection", "contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase", "non_abusive", "suicidal_threat", "physical_threat", "extreme_control" ] THRESHOLDS = { "gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.30, "control": 0.43, "guilt_tripping": 0.19, "apology_baiting": 0.45, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25, "manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25, "non_abusive": 2.0, "suicidal_threat": 0.45, "physical_threat": 0.02, "extreme_control": 0.36 } PATTERN_LABELS = LABELS[:15] DANGER_LABELS = LABELS[15:18] EXPLANATIONS = { "gaslighting": "Gaslighting involves making someone question their own reality or perceptions...", "blame_shifting": "Blame-shifting is when one person redirects the responsibility...", "projection": "Projection involves accusing the victim of behaviors the abuser exhibits.", "dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.", "mockery": "Mockery ridicules someone in a hurtful, humiliating way.", "recovery_phase": "Recovery phase dismisses someone's emotional healing process.", "insults": "Insults are derogatory remarks aimed at degrading someone.", "apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.", "deflection": "Deflection avoids accountability by redirecting blame.", "control": "Control restricts autonomy through manipulation or coercion.", "extreme_control": "Extreme control dominates decisions and behaviors entirely.", "physical_threat": "Physical threats signal risk of bodily harm.", "suicidal_threat": "Suicidal threats manipulate others using self-harm threats.", "guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.", "manipulation": "Manipulation deceives to influence or control outcomes.", "non_abusive": "Non-abusive language is respectful and free of coercion.", "obscure_formal": "Obscure/formal language manipulates through confusion or superiority." } def custom_sentiment(text): inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = sentiment_model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) label_idx = torch.argmax(probs).item() label_map = {0: "supportive", 1: "undermining"} label = label_map[label_idx] score = probs[0][label_idx].item() return {"label": label, "score": score} def calculate_abuse_level(scores, thresholds): triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]] return round(np.mean(triggered_scores) * 100, 2) if triggered_scores else 0.0 def interpret_abuse_level(score): if score > 80: return "Extreme / High Risk" elif score > 60: return "Severe / Harmful Pattern Present" elif score > 40: return "Likely Abuse" elif score > 20: return "Mild Concern" return "Very Low / Likely Safe" def analyze_messages(input_text, risk_flags): input_text = input_text.strip() if not input_text: return "Please enter a message for analysis." motif_flags, matched_phrases = detect_motifs(input_text) risk_flags = list(set(risk_flags + motif_flags)) if risk_flags else motif_flags sentiment = custom_sentiment(input_text) sentiment_label = sentiment['label'] sentiment_score = sentiment['score'] adjusted_thresholds = {k: v * 0.8 for k, v in THRESHOLDS.items()} if sentiment_label == "undermining" else THRESHOLDS.copy() inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy() pattern_count = sum(score > adjusted_thresholds[label] for label, score in zip(PATTERN_LABELS, scores[:15])) danger_flag_count = sum(score > adjusted_thresholds[label] for label, score in zip(DANGER_LABELS, scores[15:18])) contextual_flags = risk_flags if risk_flags else [] if len(contextual_flags) >= 2: danger_flag_count += 1 critical_flags = ["They've threatened harm", "They monitor/follow me", "I feel unsafe when alone with them"] high_risk_context = any(flag in contextual_flags for flag in critical_flags) non_abusive_score = scores[LABELS.index('non_abusive')] if non_abusive_score > adjusted_thresholds['non_abusive']: return "This message is classified as non-abusive." abuse_level = calculate_abuse_level(scores, adjusted_thresholds) abuse_description = interpret_abuse_level(abuse_level) if danger_flag_count >= 2: resources = "Immediate assistance recommended. Please seek professional help or contact emergency services." else: resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors." scored_patterns = [ (label, score) for label, score in zip(PATTERN_LABELS, scores[:15]) if label != "non_abusive" ] top_patterns = sorted(scored_patterns, key=lambda x: x[1], reverse=True)[:2] top_pattern_explanations = "\n".join([ f"• {label.replace('_', ' ').title()}: {EXPLANATIONS.get(label, 'No explanation available.')}" for label, _ in top_patterns ]) result = ( f"Abuse Risk Score: {abuse_level}% – {abuse_description}\n\n" f"Most Likely Patterns:\n{top_pattern_explanations}\n\n" f"⚠️ Critical Danger Flags Detected: {danger_flag_count} of 3\n" "Resources: " + resources + "\n\n" f"Sentiment: {sentiment_label.title()} (Confidence: {sentiment_score*100:.2f}%)" ) # THEN immediately follow with this: if contextual_flags: result += "\n\n⚠️ You indicated the following:\n" + "\n".join([f"• {flag.replace('_', ' ').title()}" for flag in contextual_flags]) if high_risk_context: result += "\n\n🚨 These responses suggest a high-risk situation. Consider seeking immediate help or safety planning resources." if matched_phrases: result += "\n\n🚨 Detected High-Risk Phrases:\n" for label, phrase in matched_phrases: phrase_clean = phrase.replace('"', "'").strip() result += f"• {label.replace('_', ' ').title()}: “{phrase_clean}”\n" return result iface = gr.Interface( fn=analyze_messages, inputs=[ gr.Textbox(lines=10, placeholder="Enter message here..."), gr.CheckboxGroup(label="Do any of these apply to your situation?", choices=[ "They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear", "They monitor/follow me", "I feel unsafe when alone with them" ]) ], outputs=[gr.Textbox(label="Analysis Result")], title="Abuse Pattern Detector", live=True ) if __name__ == "__main__": iface.queue().launch()