File size: 12,781 Bytes
cf2d943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
import torch
import random
from collections import OrderedDict
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import numpy as np
from PIL import Image
from torchvision import transforms

dropout_value = 0.1
class ResBlock(nn.Module):
  def __init__(self, in_channels, out_channels):
    super(ResBlock,self).__init__()
    self.res_block = nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels = out_channels, kernel_size=3, stride =1 , padding =1),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(),
        nn.Conv2d(in_channels=out_channels, out_channels = out_channels, kernel_size=3, stride =1 , padding =1),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(),
    )

  def forward (self, x):
    x = self.res_block(x)
    return x


class LayerBlock(nn.Module):
  def __init__(self, in_channels, out_channels):
    super(LayerBlock,self).__init__()
    self.layer_block = nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels = out_channels, kernel_size=3, stride =1 , padding =1),
        nn.MaxPool2d(kernel_size=2,stride=2),
        nn.BatchNorm2d(out_channels),
        nn.ReLU(),
    )

  def forward (self, x):
    x = self.layer_block(x)
    return x

class custom_resnet_s10(nn.Module):
  def __init__(self, num_classes=10):
    super(custom_resnet_s10,self).__init__()

    self.PrepLayer = nn.Sequential(
        nn.Conv2d(in_channels = 3, out_channels=64, kernel_size = 3, stride = 1, padding =1),
        nn.BatchNorm2d(64),
        nn.ReLU(),
    )
    self.Layer1 = LayerBlock(in_channels = 64, out_channels=128)
    self.resblock1 = ResBlock(in_channels =128, out_channels=128)
    self.Layer2 = LayerBlock(in_channels = 128, out_channels=256)
    self.resblock2 = ResBlock(in_channels =256, out_channels=256)
    self.Layer3 = LayerBlock(in_channels = 256, out_channels=512)
    self.resblock3 = ResBlock(in_channels =512, out_channels=512)
    self.max_pool4 = nn.MaxPool2d(kernel_size=4, stride=4) # 512,512, 4/4 = 512,512,1
    self.fc = nn.Linear(512,num_classes)

  def forward(self,x):
    x = self.PrepLayer(x)
    x = self.Layer1(x)
    resl1 = self.resblock1(x)
    
    x = x+resl1
    x = self.Layer2(x)
    resl2 = self.resblock2(x)
    x = x+resl2
    
    
    x = self.Layer3(x)
    
    resl3 = self.resblock3(x)
    x = x+resl3
    x = self.max_pool4(x)
    x = x.view(x.size(0),-1)
    
    x = self.fc(x)
    return x

def get_device():
    if torch.cuda.is_available():
        device = "cuda"
    elif torch.backends.mps.is_available():
        device = "mps"
    else:
        device = "cpu"
    print("Device Selected:", device)
    return device

DEVICE = get_device()

# Load the list of tensors from the file
loaded_misclassified_image_list = torch.load('misclassified_images_list.pt')

# Instantiate the model (make sure it has the same architecture)
loaded_model = custom_resnet_s10()
loaded_model = loaded_model.to(DEVICE)

# Load the saved state dictionary
loaded_model.load_state_dict(torch.load('model.pth', map_location=DEVICE), strict=False)

# Put the loaded model in evaluation mode
loaded_model.eval()

classes = ['plane', 'car', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']
mean = (0.49139968, 0.48215827, 0.44653124)
std = (0.24703233, 0.24348505, 0.26158768)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=mean, std=std)
])

dict_layer = {'layer3': loaded_model.resblock2.res_block[-1],
                'layer4': loaded_model.resblock3.res_block[-1]}

def view_gradcam_images(choice_gradcam):
    if choice_gradcam == "Yes (View Existing Images)":
      return gr.update(label ="Number of GradCAM Images to view", visible=True, interactive = True), \
      gr.update(visible=True), \
      gr.update(visible=True),  gr.update(visible=True), \
      gr.update(visible=False) # Gallery not shown as yet
    else:
      #TODO: to be completed
      return gr.update(visible=False), gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False)

def process_gradcam_images(num_images,layer,opacity,image_list=None):
 
  if not image_list:
    selected_data = random.sample(loaded_misclassified_image_list, min(num_images,len(loaded_misclassified_image_list)))
  else:
    selected_data = [image_list]

  layer_model = dict_layer.get(layer)
  cam = GradCAM(model=loaded_model, target_layers = [layer_model], use_cuda = False)
  grad_images = []
  inv_normalize = transforms.Normalize(
    mean=[-0.50/0.2197, -0.50/0.1858, -0.50/0.1569], # mean_ds = [0.2197, 0.1858, 0.1569]
    std=[1/0.1810, 1/0.1635, 1/0.1511] # std_dev_ds =[0.1810, 0.1635, 0.1511]
    )
  for i, (img, pred, correct) in enumerate(selected_data):
    input_tensor = img.unsqueeze(0)
    targets = [ClassifierOutputTarget(pred)]
    grayscale_cam = cam(input_tensor=input_tensor, targets=targets)

    grayscale_cam = grayscale_cam[0, :]

    # Get back the original image
    img = input_tensor.squeeze(0).to('cpu')
    img = inv_normalize(img)
    rgb_img = np.transpose(img, (1, 2, 0))
    rgb_img = torch.clamp(rgb_img, max = 1)
    rgb_img = rgb_img.numpy()

    visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=opacity)
    if not image_list:
        grad_images.append(((visualization),f'Pred: {classes[pred.cpu()]} | Truth :{classes[correct.cpu()]}'))
    else:
        grad_images.append(((visualization),f'Prediction: {classes[pred.cpu()]}'))

  print(str(num_images) + "**" + str(layer) + "**" + str(opacity))
  return  grad_images, gr.update(visible=True)



def process_misclassified_images(num_images):
  selected_data = random.sample(loaded_misclassified_image_list, min(num_images,len(loaded_misclassified_image_list)))
  misclassified_images = []
  for i, (img, pred, correct) in enumerate(selected_data):
    img, pred, target = img.cpu().numpy().astype(dtype=np.float32), pred.cpu(), correct.cpu()
    for j in range(img.shape[0]):
        img[j] = (img[j] * std[j]) + mean[j]
    img = np.transpose(img, (1, 2, 0))
    img = Image.fromarray((img * 255).astype(np.uint8))
    misclassified_images.append(((img),f'Pred: {classes[pred]} | Truth :{classes[correct]}'))
  return  misclassified_images, gr.update(visible=True)

def view_misclassified_images(choice_misclassified):
    if choice_misclassified == "Yes":
      return gr.update(label ="Number of Misclassified Images to view", visible=True, interactive = True),gr.update(visible=True),gr.update(visible=False)
    else:
        return gr.update(visible=False),gr.update(visible=False),gr.update(visible=False)

def classify_image(image, num_classes=3, grad_cam_choice = False, layer = None, opacity = 0.8 ):
  # transforming image and getting prediction from model
  transformed_image = transform(image)
  image_tensor = transformed_image.to(DEVICE).unsqueeze(0)#transform(torch.tensor(image).to(DEVICE)).unsqueeze(0) # making it a batch

  # sending it to model to get prediction
  logits = loaded_model(image_tensor) # logits
  output = F.softmax(logits.view(-1)) #F.softmax(output.flatten(), dim=-1) #

  confidences = [(classes[i], float(output[i])) for i in range(len(classes))]
  confidences.sort(key=lambda x: x[1], reverse=True)
  confidences = OrderedDict(confidences[:num_classes])
  label = torch.argmax(output).item()

  if grad_cam_choice:
    print("** Before Calling **",transformed_image.shape)
    image_list = [transformed_image.to(DEVICE),torch.tensor(label).to(DEVICE),torch.tensor(label).to(DEVICE)]

    grad_cam_output,_ = process_gradcam_images(num_images = 1,layer = layer,opacity= opacity,image_list=image_list)

    return confidences, grad_cam_output , gr.update(visible=True)
  else:
    return confidences, gr.update(visible=False),gr.update(visible=False)


with gr.Blocks() as demo:
  with gr.Tab("GradCam"):
    gr.Markdown(
                """
                Visualize Class Activations Maps (helps to see what the model is actually looking at in the image) generated by the model's layer for the predicted class
                - For existing images
                - For new images (choose an example image or upload your own)
                """
            )
    with gr.Column():
      with gr.Box():
        radio_gradcam = gr.Radio(["Yes (View Existing Images)", "No (New or Example Images)"], label="Do you want to view existing GradCAM images?")
      with gr.Column():
        with gr.Row():
          slider_gradcam_num_images = gr.Slider(minimum=1, maximum =10, value = 1, step =1, visible= False, interactive = False)
          dropdown_gradcam_layer = gr.Dropdown(choices=['layer4', 'layer3'], value = "layer4", label="Please select the layer from which the GradCAM would be taken", interactive = True, visible= False)
          slider_gradcam_opacity = gr.Slider(label ="Opacity of Images", minimum=0.05, maximum =1.00, value = 0.70, step =0.05, visible= False, interactive = True)
        button_gradcam = gr.Button("View GradCAM Output", visible = False)
        # txt_gradcam = gr.Textbox ("GradCAM output here" , visible = True)
        output_gallery_gradcam=gr.Gallery(label="GradCAM Output", min_width=512,columns=4, visible = False)
      with gr.Box():
        with gr.Row():
          with gr.Column():
            input_image_classify = gr.Image(label="Classification",type="pil", shape=(32, 32))
            slider_classify_num_classes = gr.Slider(label="Select the number of top classes to be shown",minimum=1, maximum =10, value = 3, step = 1, visible= True, interactive = True)
            checkbox_gradcam_classify = gr.Checkbox(label="Enable GradCAM", value=True, info="Do you want to see Class Activation Maps?", visible=True)
            # txt_classify= gr.Textbox ("Classification output here" , visible = True)
            dropdown_gradcam_classify_layer = gr.Dropdown(choices=['layer4', 'layer3'], value = "layer4", label="Please select the layer from which the GradCAM would be taken", interactive = True, visible= True)
            slider_gradcam_classify_opacity = gr.Slider(label ="Opacity of Images", minimum=0.05, maximum =1.00, value = 0.80, step =0.05, visible= True, interactive = True)
            button_classify = gr.Button("Submit to Classify Image", visible = True)

          with gr.Column():
            label_classify = gr.Label(num_top_classes=10, visible = True)
            gallery_gradcam_classify = gr.Gallery(label="GradCAM Output", min_width=256,columns=1, visible = True)
        with gr.Row():
          gr.Examples(['bird1.jpg','car1.jpg','deer1.jpg','frog1.jpg','plane1.jpg','ship1.jpg','truck1.jpg',"cat1.jpg","dog1.jpg","horse1.jpg"],inputs=[input_image_classify])
  with gr.Tab("Misclassified Examples"):
    gr.Markdown(
        """
        The AI model is not able to predict correct image labels all the time.

        Select "Yes" to visualize the misclassified images with their model predicted label and ground truth label.
        """
    )
    with gr.Column():
      with gr.Box():
        radio_misclassified = gr.Radio(["Yes", "No"], label="Do you want to view Misclassified images?")
        slider_misclassified_num_images = gr.Slider(minimum=1, maximum =10, value = 1, step =1, visible= False, interactive = False)
        button_misclassified = gr.Button("View Misclassified Output", visible = False)
        # txt_misclassified = gr.Textbox ("Misclassified output here" , visible = True)
        output_gallery_misclassification=gr.Gallery(label="Misclassification Output (Predicted/Truth)", min_width=512,columns=5, visible = False)

  radio_gradcam.change(fn=view_gradcam_images, inputs=radio_gradcam, outputs=[slider_gradcam_num_images, dropdown_gradcam_layer,slider_gradcam_opacity,button_gradcam, output_gallery_gradcam])
  button_gradcam.click(fn = process_gradcam_images, inputs = [slider_gradcam_num_images,dropdown_gradcam_layer,slider_gradcam_opacity], outputs = [output_gallery_gradcam,output_gallery_gradcam])

  radio_misclassified.change(fn=view_misclassified_images, inputs=radio_misclassified, outputs=[slider_misclassified_num_images,button_misclassified,output_gallery_misclassification])
  button_misclassified.click(fn = process_misclassified_images, inputs = [slider_misclassified_num_images], outputs = [output_gallery_misclassification,output_gallery_misclassification])
  button_classify.click(fn=classify_image, inputs =[input_image_classify,slider_classify_num_classes,checkbox_gradcam_classify,dropdown_gradcam_classify_layer,slider_gradcam_classify_opacity], outputs = [label_classify,gallery_gradcam_classify,gallery_gradcam_classify])
demo.launch ()