Spaces:
Sleeping
Sleeping
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain.chains import create_retrieval_chain | |
| #from Api_Key import google_plam | |
| from langchain_groq import ChatGroq | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| def prompt_template_to_analyze_resume(): | |
| template = """ | |
| You are provided with the Resume of the Candidate in the context below . As an Talent Aquistion bot , your task is to provide insights about the candidate . | |
| If and only if asked about reliability , check How frequently the candidate has switched from one company to another. | |
| Grade him on the given basis: | |
| If less than 2 Year - very less Reliable | |
| if more than 2 years but less than 5 years - Reliable | |
| if more than 5 Years - Highly Reliable | |
| \n\n:{context} | |
| """ | |
| prompt = ChatPromptTemplate.from_messages( | |
| [ | |
| ('system',template), | |
| ('human','input'), | |
| ] | |
| ) | |
| return prompt | |
| def Q_A(vectorstore,question,API_KEY): | |
| os.environ["GROQ_API_KEY"] = API_KEY | |
| llm_groq = ChatGroq(model="llama3-8b-8192") | |
| # Create a retriever | |
| retriever = vectorstore.as_retriever(search_type = 'similarity',search_kwargs = {'k':2},) | |
| question_answer_chain = create_stuff_documents_chain(llm_groq, prompt_template_to_analyze_resume()) | |
| chain = create_retrieval_chain(retriever, question_answer_chain) | |
| result = chain.invoke({'input':question}) | |
| return result['answer'] |