Spaces:
Sleeping
Sleeping
| from langchain_experimental.text_splitter import SemanticChunker | |
| from langchain_chroma import Chroma | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2" | |
| embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False}) | |
| def replace_t_with_space(list_of_documents): | |
| """ | |
| Replaces all tab characters ('\t') with spaces in the page content of each document. | |
| Args: | |
| list_of_documents: A list of document objects, each with a 'page_content' attribute. | |
| Returns: | |
| The modified list of documents with tab characters replaced by spaces. | |
| """ | |
| for doc in list_of_documents: | |
| doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces | |
| return list_of_documents | |
| def read_pdf(pdf_path): | |
| loader = PyPDFLoader(pdf_path) | |
| docs = loader.load() | |
| print("Total Documents :",len(docs)) | |
| return docs | |
| def Chunks(docs): | |
| text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile') | |
| docs = text_splitter.split_documents(docs) | |
| cleaned_docs = replace_t_with_space(docs) | |
| return cleaned_docs | |
| def PDF_4_QA(file): | |
| docs = read_pdf(file) | |
| cleaned_docs = Chunks(docs) | |
| vectordb = Chroma.from_documents( | |
| documents=cleaned_docs, | |
| embedding=embeddings, | |
| persist_directory="Chroma/docs" | |
| ) | |
| return vectordb |