Spaces:
Sleeping
Sleeping
Update QnA.py
Browse files
QnA.py
CHANGED
|
@@ -3,6 +3,8 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
| 3 |
from langchain.chains import create_retrieval_chain
|
| 4 |
from langchain.chains.summarize.chain import load_summarize_chain
|
| 5 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
|
|
|
|
|
|
| 6 |
|
| 7 |
#from Api_Key import google_plam
|
| 8 |
from langchain_groq import ChatGroq
|
|
@@ -55,7 +57,7 @@ def summarize(documents,llm):
|
|
| 55 |
return results['output_text']
|
| 56 |
|
| 57 |
|
| 58 |
-
def get_hugging_face_model(model_id='mistralai/Mixtral-8x7B-Instruct-v0.1',temperature=0.01,max_tokens=
|
| 59 |
llm = HuggingFaceHub(
|
| 60 |
huggingfacehub_api_token =api_key ,
|
| 61 |
repo_id=model_id,
|
|
@@ -72,6 +74,10 @@ def Q_A(vectorstore,question,API_KEY):
|
|
| 72 |
|
| 73 |
# Create a retriever
|
| 74 |
retriever = vectorstore.as_retriever(search_type = 'similarity',search_kwargs = {'k':2},)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if 'reliable' in question.lower() or 'relaibility' in question.lower():
|
| 76 |
question_answer_chain = create_stuff_documents_chain(chat_llm, prompt_template_for_relaibility())
|
| 77 |
|
|
|
|
| 3 |
from langchain.chains import create_retrieval_chain
|
| 4 |
from langchain.chains.summarize.chain import load_summarize_chain
|
| 5 |
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
| 6 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
| 7 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 8 |
|
| 9 |
#from Api_Key import google_plam
|
| 10 |
from langchain_groq import ChatGroq
|
|
|
|
| 57 |
return results['output_text']
|
| 58 |
|
| 59 |
|
| 60 |
+
def get_hugging_face_model(model_id='mistralai/Mixtral-8x7B-Instruct-v0.1',temperature=0.01,max_tokens=4096,api_key=None):
|
| 61 |
llm = HuggingFaceHub(
|
| 62 |
huggingfacehub_api_token =api_key ,
|
| 63 |
repo_id=model_id,
|
|
|
|
| 74 |
|
| 75 |
# Create a retriever
|
| 76 |
retriever = vectorstore.as_retriever(search_type = 'similarity',search_kwargs = {'k':2},)
|
| 77 |
+
#Create a contextual compressor
|
| 78 |
+
compressor = LLMChainExtractor.from_llm(chat_llm)
|
| 79 |
+
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor,base_retriever=retriever)
|
| 80 |
+
|
| 81 |
if 'reliable' in question.lower() or 'relaibility' in question.lower():
|
| 82 |
question_answer_chain = create_stuff_documents_chain(chat_llm, prompt_template_for_relaibility())
|
| 83 |
|