final_IIITA / app.py
Sambhavnoobcoder's picture
changed header note to h3
bd82b38
raw
history blame
2.73 kB
import gradio as gr
import torch
from transformers import logging
import random
from PIL import Image
from Utils import MingleModel
logging.set_verbosity_error()
def get_concat_h(images):
widths, heights = zip(*(i.size for i in images))
total_width = sum(widths)
max_height = max(heights)
dst = Image.new('RGB', (total_width, max_height))
x_offset = 0
for im in images:
dst.paste(im, (x_offset,0))
x_offset += im.size[0]
return dst
mingle_model = MingleModel()
def mingle_prompts(first_prompt, second_prompt):
imgs = []
text_input1 = mingle_model.do_tokenizer(first_prompt)
text_input2 = mingle_model.do_tokenizer(second_prompt)
with torch.no_grad():
text_embeddings1 = mingle_model.get_text_encoder(text_input1)
text_embeddings2 = mingle_model.get_text_encoder(text_input2)
rand_generator = random.randint(1, 2048)
# Mix them together
# mix_factors = [0.1, 0.3, 0.5, 0.7, 0.9]
mix_factors = [0.5]
for mix_factor in mix_factors:
mixed_embeddings = (text_embeddings1 * mix_factor + text_embeddings2 * (1 - mix_factor))
# Generate!
steps = 20
guidence_scale = 8.0
img = mingle_model.generate_with_embs(mixed_embeddings, rand_generator, num_inference_steps=steps,
guidance_scale=guidence_scale)
imgs.append(img)
return get_concat_h(imgs)
with gr.Blocks() as demo:
gr.Markdown(
'''
<h1 style="text-align: center;"> Fashion Generator GAN</h1>
''')
gr.Markdown(
'''
<h3 style="text-align: center;"> Note : the gan is extremely resource extensive, so it running the inference on cpu takes long time . kindly wait patiently while the model generates the output. </h3>
''')
gr.Markdown(
'''
<p style="text-align: center;">generated an image as an average of 2 prompts inserted !!</p>
''')
first_prompt = gr.Textbox(label="first_prompt")
second_prompt = gr.Textbox(label="second_prompt")
greet_btn = gr.Button("Submit")
# gr.Markdown("## Text Examples")
# gr.Examples([['batman, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic',
# 'venom, dynamic lighting, photorealistic fantasy concept art, trending on art station, stunning visuals, terrifying, creative, cinematic'],
# ['A mouse', 'A leopard']], [first_prompt, second_prompt])
gr.Markdown("# Output Results")
output = gr.Image(shape=(512,512))
greet_btn.click(fn=mingle_prompts, inputs=[first_prompt, second_prompt], outputs=[output])
demo.launch()