Spaces:
Build error
Build error
Commit
·
5bdaeed
1
Parent(s):
3e95584
Create api.py
Browse files
api.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import shutil
|
| 4 |
+
import urllib.request
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from tempfile import NamedTemporaryFile
|
| 7 |
+
|
| 8 |
+
import fitz
|
| 9 |
+
import numpy as np
|
| 10 |
+
import openai
|
| 11 |
+
import tensorflow_hub as hub
|
| 12 |
+
from fastapi import UploadFile
|
| 13 |
+
from lcserve import serving
|
| 14 |
+
from sklearn.neighbors import NearestNeighbors
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
recommender = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def download_pdf(url, output_path):
|
| 21 |
+
urllib.request.urlretrieve(url, output_path)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def preprocess(text):
|
| 25 |
+
text = text.replace('\n', ' ')
|
| 26 |
+
text = re.sub('\s+', ' ', text)
|
| 27 |
+
return text
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def pdf_to_text(path, start_page=1, end_page=None):
|
| 31 |
+
doc = fitz.open(path)
|
| 32 |
+
total_pages = doc.page_count
|
| 33 |
+
|
| 34 |
+
if end_page is None:
|
| 35 |
+
end_page = total_pages
|
| 36 |
+
|
| 37 |
+
text_list = []
|
| 38 |
+
|
| 39 |
+
for i in range(start_page - 1, end_page):
|
| 40 |
+
text = doc.load_page(i).get_text("text")
|
| 41 |
+
text = preprocess(text)
|
| 42 |
+
text_list.append(text)
|
| 43 |
+
|
| 44 |
+
doc.close()
|
| 45 |
+
return text_list
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def text_to_chunks(texts, word_length=150, start_page=1):
|
| 49 |
+
text_toks = [t.split(' ') for t in texts]
|
| 50 |
+
chunks = []
|
| 51 |
+
|
| 52 |
+
for idx, words in enumerate(text_toks):
|
| 53 |
+
for i in range(0, len(words), word_length):
|
| 54 |
+
chunk = words[i : i + word_length]
|
| 55 |
+
if (
|
| 56 |
+
(i + word_length) > len(words)
|
| 57 |
+
and (len(chunk) < word_length)
|
| 58 |
+
and (len(text_toks) != (idx + 1))
|
| 59 |
+
):
|
| 60 |
+
text_toks[idx + 1] = chunk + text_toks[idx + 1]
|
| 61 |
+
continue
|
| 62 |
+
chunk = ' '.join(chunk).strip()
|
| 63 |
+
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
|
| 64 |
+
chunks.append(chunk)
|
| 65 |
+
return chunks
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class SemanticSearch:
|
| 69 |
+
def __init__(self):
|
| 70 |
+
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
|
| 71 |
+
self.fitted = False
|
| 72 |
+
|
| 73 |
+
def fit(self, data, batch=1000, n_neighbors=5):
|
| 74 |
+
self.data = data
|
| 75 |
+
self.embeddings = self.get_text_embedding(data, batch=batch)
|
| 76 |
+
n_neighbors = min(n_neighbors, len(self.embeddings))
|
| 77 |
+
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
|
| 78 |
+
self.nn.fit(self.embeddings)
|
| 79 |
+
self.fitted = True
|
| 80 |
+
|
| 81 |
+
def __call__(self, text, return_data=True):
|
| 82 |
+
inp_emb = self.use([text])
|
| 83 |
+
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
|
| 84 |
+
|
| 85 |
+
if return_data:
|
| 86 |
+
return [self.data[i] for i in neighbors]
|
| 87 |
+
else:
|
| 88 |
+
return neighbors
|
| 89 |
+
|
| 90 |
+
def get_text_embedding(self, texts, batch=1000):
|
| 91 |
+
embeddings = []
|
| 92 |
+
for i in range(0, len(texts), batch):
|
| 93 |
+
text_batch = texts[i : (i + batch)]
|
| 94 |
+
emb_batch = self.use(text_batch)
|
| 95 |
+
embeddings.append(emb_batch)
|
| 96 |
+
embeddings = np.vstack(embeddings)
|
| 97 |
+
return embeddings
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def load_recommender(path, start_page=1):
|
| 101 |
+
global recommender
|
| 102 |
+
if recommender is None:
|
| 103 |
+
recommender = SemanticSearch()
|
| 104 |
+
|
| 105 |
+
texts = pdf_to_text(path, start_page=start_page)
|
| 106 |
+
chunks = text_to_chunks(texts, start_page=start_page)
|
| 107 |
+
recommender.fit(chunks)
|
| 108 |
+
return 'Corpus Loaded.'
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
|
| 112 |
+
openai.api_key = openAI_key
|
| 113 |
+
try:
|
| 114 |
+
completions = openai.Completion.create(
|
| 115 |
+
engine=engine,
|
| 116 |
+
prompt=prompt,
|
| 117 |
+
max_tokens=512,
|
| 118 |
+
n=1,
|
| 119 |
+
stop=None,
|
| 120 |
+
temperature=0.7,
|
| 121 |
+
)
|
| 122 |
+
message = completions.choices[0].text
|
| 123 |
+
except Exception as e:
|
| 124 |
+
message = f'API Error: {str(e)}'
|
| 125 |
+
return message
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def generate_answer(question, openAI_key):
|
| 129 |
+
topn_chunks = recommender(question)
|
| 130 |
+
prompt = ""
|
| 131 |
+
prompt += 'search results:\n\n'
|
| 132 |
+
for c in topn_chunks:
|
| 133 |
+
prompt += c + '\n\n'
|
| 134 |
+
|
| 135 |
+
prompt += (
|
| 136 |
+
"Instructions: Compose a comprehensive reply to the query using the search results given. "
|
| 137 |
+
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "
|
| 138 |
+
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
|
| 139 |
+
"with the same name, create separate answers for each. Only include information found in the results and "
|
| 140 |
+
"don't add any additional information. Make sure the answer is correct and don't output false content. "
|
| 141 |
+
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "
|
| 142 |
+
"search results which has nothing to do with the question. Only answer what is asked. The "
|
| 143 |
+
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
prompt += f"Query: {question}\nAnswer:"
|
| 147 |
+
answer = generate_text(openAI_key, prompt, "text-davinci-003")
|
| 148 |
+
return answer
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def load_openai_key() -> str:
|
| 152 |
+
key = os.environ.get("OPENAI_API_KEY")
|
| 153 |
+
if key is None:
|
| 154 |
+
raise ValueError(
|
| 155 |
+
"[ERROR]: Please pass your OPENAI_API_KEY. Get your key here : https://platform.openai.com/account/api-keys"
|
| 156 |
+
)
|
| 157 |
+
return key
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@serving
|
| 161 |
+
def ask_url(url: str, question: str):
|
| 162 |
+
download_pdf(url, 'corpus.pdf')
|
| 163 |
+
load_recommender('corpus.pdf')
|
| 164 |
+
openAI_key = load_openai_key()
|
| 165 |
+
return generate_answer(question, openAI_key)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@serving
|
| 169 |
+
async def ask_file(file: UploadFile, question: str) -> str:
|
| 170 |
+
suffix = Path(file.filename).suffix
|
| 171 |
+
with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
| 172 |
+
shutil.copyfileobj(file.file, tmp)
|
| 173 |
+
tmp_path = Path(tmp.name)
|
| 174 |
+
|
| 175 |
+
load_recommender(str(tmp_path))
|
| 176 |
+
openAI_key = load_openai_key()
|
| 177 |
+
return generate_answer(question, openAI_key)
|