File size: 599 Bytes
2f9f9d9 625452f b976ff0 4386646 b976ff0 4386646 078e4df 4386646 078e4df 4386646 078e4df 60ae5e6 078e4df 60ae5e6 4386646 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
import gradio as gr
import tensorflow as tf
# Load the saved model
model = tf.keras.models.load_model("sentimentality.h5")
def predict_sentiment(text):
# preprocess input text
processed_text = preprocess(text)
# predict sentiment
prediction = model.predict([processed_text])[0][0]
sentiment = 'positive' if prediction >= 0.5 else 'negative'
return sentiment
iface = gr.Interface(fn=predict_sentiment,
inputs=gr.inputs.Textbox(label='Input Text'),
outputs=gr.outputs.Label(label='Sentiment Prediction'))
iface.launch() |