Sambhavnoobcoder commited on
Commit
5328dbc
·
1 Parent(s): e7041e9

created app.py

Browse files

first creation of app.py was done here.

Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from tensorflow import keras
4
+
5
+ # Load the sentiment analysis model
6
+ model = keras.models.load_model("sentimentality.h5")
7
+
8
+ # Load the tokenizer and max length used during training
9
+ tokenizer = keras.preprocessing.text.tokenizer_from_json(open("tokenizer.json").read())
10
+ max_len = 100
11
+
12
+ def predict_sentiment(text):
13
+ # Preprocess the text
14
+ text = [text]
15
+ text = tf.keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequences(text), maxlen=max_len)
16
+
17
+ # Make a prediction
18
+ prediction = model.predict(text)[0][0]
19
+
20
+ # Return the probabilities of each sentiment
21
+ positive_prob = round(prediction * 100, 2)
22
+ negative_prob = round((1 - prediction) * 100, 2)
23
+ neutral_prob = 100 - positive_prob - negative_prob
24
+
25
+ return f"Positive: {positive_prob}%\nNegative: {negative_prob}%\nNeutral: {neutral_prob}%"
26
+
27
+ # Define the interface of the Gradio app
28
+ iface = gr.Interface(
29
+ fn=predict_sentiment,
30
+ inputs=gr.inputs.Textbox(label="Enter text here:"),
31
+ outputs=gr.outputs.Textbox(label="Sentiment probabilities:"),
32
+ title="Sentiment Analysis",
33
+ description="Enter some text and get the probabilities of the sentiment.",
34
+ )
35
+
36
+ # Run the Gradio app
37
+ iface.launch()