Spaces:
Sleeping
Sleeping
import gradio as gr | |
from groq import Groq | |
import os | |
import threading # Import threading module | |
# Initialize Groq client with your API key | |
client = Groq(api_key=os.environ["GROQ_API_KEY"]) | |
# Load Text-to-Image Models | |
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA") | |
model2 = gr.load("models/Purz/face-projection") | |
# Stop event for threading (image generation) | |
stop_event = threading.Event() | |
# Function to generate tutor output (lesson, question, feedback) | |
def generate_tutor_output(subject, difficulty, student_input): | |
prompt = f""" | |
You are an expert tutor in {subject} at the {difficulty} level. | |
The student has provided the following input: "{student_input}" | |
Please generate: | |
1. A brief, engaging lesson on the topic (2-3 paragraphs) | |
2. A thought-provoking question to check understanding | |
3. Constructive feedback on the student's input | |
Format your response as a JSON object with keys: "lesson", "question", "feedback" | |
""" | |
completion = client.chat.completions.create( | |
messages=[{ | |
"role": "system", | |
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students." | |
}, { | |
"role": "user", | |
"content": prompt, | |
}], | |
model="mixtral-8x7b-32768", # Model for text generation | |
max_tokens=1000, | |
) | |
return completion.choices[0].message.content | |
# Function to generate images based on model selection | |
def generate_images(text, selected_model): | |
stop_event.clear() | |
if selected_model == "Model 1 (Turbo Realism)": | |
model = model1 | |
elif selected_model == "Model 2 (Face Projection)": | |
model = model2 | |
else: | |
return ["Invalid model selection."] * 3 | |
results = [] | |
for i in range(3): | |
if stop_event.is_set(): | |
return ["Image generation stopped by user."] * 3 | |
modified_text = f"{text} variation {i+1}" | |
result = model(modified_text) | |
results.append(result) | |
return results | |
# Set up the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images") | |
# Section for generating Text-based output (lesson, question, feedback) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Input fields for subject, difficulty, and student input for textual output | |
subject = gr.Dropdown( | |
["Math", "Science", "History", "Literature", "Code", "AI"], | |
label="Subject", | |
info="Choose the subject of your lesson" | |
) | |
difficulty = gr.Radio( | |
["Beginner", "Intermediate", "Advanced"], | |
label="Difficulty Level", | |
info="Select your proficiency level" | |
) | |
student_input = gr.Textbox( | |
placeholder="Type your query here...", | |
label="Your Input", | |
info="Enter the topic you want to learn" | |
) | |
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary") | |
with gr.Column(scale=3): | |
# Output fields for lesson, question, and feedback | |
lesson_output = gr.Markdown(label="Lesson") | |
question_output = gr.Markdown(label="Comprehension Question") | |
feedback_output = gr.Markdown(label="Feedback") | |
# Section for generating Visual output | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Input fields for text and model selection for image generation | |
model_selector = gr.Radio( | |
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"], | |
label="Select Image Generation Model", | |
value="Model 1 (Turbo Realism)" | |
) | |
submit_button_visual = gr.Button("Generate Visuals", variant="primary") | |
with gr.Column(scale=3): | |
# Output fields for generated images | |
output1 = gr.Image(label="Generated Image 1") | |
output2 = gr.Image(label="Generated Image 2") | |
output3 = gr.Image(label="Generated Image 3") | |
gr.Markdown(""" | |
### How to Use | |
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback. | |
2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic. | |
3. Review the AI-generated content to enhance your learning experience! | |
""") | |
def process_output_text(subject, difficulty, student_input): | |
try: | |
tutor_output = generate_tutor_output(subject, difficulty, student_input) | |
parsed = eval(tutor_output) # Convert string to dictionary | |
return parsed["lesson"], parsed["question"], parsed["feedback"] | |
except: | |
return "Error parsing output", "No question available", "No feedback available" | |
def process_output_visual(text, selected_model): | |
try: | |
images = generate_images(text, selected_model) # Generate images | |
return images[0], images[1], images[2] | |
except: | |
return None, None, None | |
# Generate Text-based Output | |
submit_button_text.click( | |
fn=process_output_text, | |
inputs=[subject, difficulty, student_input], | |
outputs=[lesson_output, question_output, feedback_output] | |
) | |
# Generate Visual Output | |
submit_button_visual.click( | |
fn=process_output_visual, | |
inputs=[student_input, model_selector], | |
outputs=[output1, output2, output3] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |